Что такое анаэробные бактерии? Как правильно применять- Виды + Фото и Видео

Анаэробные бактерии и анаэробные инфекции: Что это такое? Принцип работы и Лидирующие производители +Фото и Видео

Частные дома редко имеют подключение к центральной системе канализации. В своем большинстве владельцы обустраивают свою систему хранения стоков, на многих участках есть выгребная яма. Раньше производить утилизацию отходов жизнедеятельности, прибегая к помощи ассенизаторов, приходилось довольно часто. Сейчас этот вопрос решается при помощи аэробный и анаэробных бактерий.

Применение живых бактерии для канализационных накопителей и выгребных ям помогает избавиться от неприятного запаха и ускорить разложение отходов.

Как работают биодобавки

Бактерии – это живые микроорганизмы

Бактерии доставляются в септик или выгребную яму. В теплой жидкой среде они быстро размножаются, образуя колонию. Выводят бактерии из почвенных организмов селекционным путем. Они помогают разложению органических отходов и некоторых неорганических (для неорганики добавляются ферменты).

Выпускаются в таблетках, капсулах, в жидком виде. Таблетки или капсулы можно смыть в унитаз, в выгребную яму препарат добавляется в жидком виде. Бактерии разводятся в теплой воде.

Виды микроогранизмов

  • Анаэробные
  • Аэробные
  • Биоактиваторы

Анаэробные бактерии для септиков

Как работают?

Организмы данного вида применяются для закрытых септиков, для продуктивной работы и полноценного существования им не требуется кислород.

Анаэробы не выводились искусственно, они существуют в природе.

Микроорганизмы прекрасно размножаются, создают колонии в болотах, влажном грунте, в илистых местах, глубоко в почве. Определенные виды перерабатывают останки животных и погибших растений, образуя перегной.

Бактерии производят очищение воды, разделяют минеральные вещества и газы, что и требуется для септиков.

Анаэробы перерабатывают сточные воды, ускоряют процесс разложения, очищают воду. При работе бактерий происходит выделение метана и повышение температуры содержимого септика. По причине выделяемого газа рекомендуют использовать микроорганизмы для резервуаров закрытого типа.

После продуктивной работы анаэробных организмов, часть веществ опускается на дно и образует перегной, другая часть поднимается наверх.

Внимание!

При контакте с кислородом анаэробы гибнут.
При отрицательных температурах работоспособность понижается, часть микроорганизмов погибает. Септики рекомендуют утеплять.

Для активной жизнедеятельности анаэробам требуются
  1. Бескислородная изолированная среда
  2. От +9 до + 37 градусов по Цельсию
  3. pH 6-8 единиц
  4. откачка твердых осадков
Распад органических веществ в септиках делится на два этапа

Происходит кислое брожение. Сопровождает процесс сильно неприятный запах. Брожение происходит очень медленно. Бактерии создают первичный ил, куски ила поднимаются наверх с газовыми пузырьками. Постепенно метан заполняет всю свободную площадь септика и вытесняет кислород. Так создается оптимальная среда для анаэробов.

Как только среда создана, начинается второй этап.

Щелочной распад – метановое брожение. Неприятный запах практически пропадает, ил приобретает черный цвет. Бактерии помогают разделить отходы жизнедеятельности на газ, жидкость и твердый осадок.

Плюсы

  • Требуется малое количество бактерий
  • Высокий уровень расщепления органических веществ
  • Отсутствует аэрация
  • Образующийся метан можно использовать

Минусы

  • При увеличении колонии образуется слишком много метана
  • Результат очистки 65-70%
  • Твердый осадок необходимо удалять
  • Осадок не пригоден для использования.

Ведущие производители

Водограй – основное преимущество малый твердый осадок

Атмосбто – препарат не требует предварительного запуска

Санэкс – главное достоинство перерабатывает неорганические вещества и жиры

Доктор Робик – в составе 6 штаммов бактерий, перерабатывает все виды органики, неорганику частично.

В течении первого месяца рекомендуется раз в неделю добавлять бактерии, чтобы повысить численность колонии.

Аэробные бактерии

Эти микроорганизмы продуктивно работают при наличии кислорода.

Ил что образуют аэробы можно применять в качестве удобрения. Бактерии при расщеплении органики выделяют углекислый газ. Отсутствие неприятного запаха гарантировано.

В случае использования аэробов для закрытого септика, устанавливается компрессор для подачи кислорода.

Биоактиваторы

Биоактиваторы содержат до десятков различных микроорганизмов.

Стоит учесть, что препарат есть универсальный и узкого направления.

Универсальный биоактиватор можно применять для любых видов септиков и выгребных ям.

При применении любых бактерий в канализацию запрещено утилизировать антибиотики и другие медицинские препараты, хлор и агрессивные химические вещества, это приведет к гибели микроорганизмов.

Как выбрать бактерии?

  1. Учитывать предназначение
  2. Для самодельных однокамерных септиков хорошо подходят аэробные бактерии или универсальные биоактиваторы
  3. Многокамерные септики с компрессором – аэробные бактерии.
  4. Для профилактики применять биоактиваторы
  5. Закрытые септики без компрессора – анаэробные и биоактиваторы
  6. Если септик долгое время не эксплуатировался, требуются специальные активаторы для запуска системы. Живые бактерии не подойдут.

Внимательно читайте рекомендации производителя на упаковке.

Бактерии для септиков: разновидности и принципы работы

Из этой статьи вы узнаете:

  1. Виды бактерий для септиков
  2. Основные принципы анаэробной очистки
  3. Особенности аэробной очистки
  4. Суть биоактиваторов
  5. Разновидность бактерий по назначению
  6. Частота использования бактерий для септиков

Частные дома и садовые домики часто невозможно подключить к централизованной канализационной системе. Поэтому вопрос утилизации бытовых отходов очень актуален для них. На помощь приходят септики, которые накапливают продукты жизнедеятельности, органические и неорганические отходы. Для правильной их переработки нужны микроорганизмы, которые расщепляют жиры, избавляют от неприятных запахов, ускоряют разложение органических веществ.

Эти биопрепараты гораздо безопаснее средств на основе хлора, которые также могут использоваться для обеззараживания. В отличие от последних, которые негативно влияют на состояние почвы, бактерии для септиков не наносят вреда растениям и человеку. Подробнее о них читайте далее.

Виды бактерий для септиков

В основе очистки отходов в выгребных ямах всегда лежит органический процесс разложения веществ при помощи разных бактерий. Они разделяют остатки на воду, углекислый газ, азот, нитриты и другие составляющие. Для канализационных систем применяют только натуральные компоненты – сухую выжимку бактерий.

Если в очистительное сооружение дополнительно помещают активные микроорганизмы и увеличивают их число, то проводят контроль скорости органического разложения отходов. При этом отсутствует выделение неприятных запахов.

Читайте также:
Что повесить над кроватью в спальне? 10 крутых идей

Поменять активность бактерий для септиков, существенно их усилить можно при помощи нескольких способов. Деятельность микроорганизмов можно стимулировать несколькими способами:

  • Наличие биологических компонентов.
  • Оптимальный температурный режим — +4 до +60°С.
  • Аэрация установки кислородом.
  • Улучшение кислотности стоков.
  • Отсутствие опасных химических веществ.

Препараты с активными органическими бактериями для септиков и выгребных ям работают сразу в нескольких направлениях. Они позволяют:

  • удалять налет жира с внутренних поверхностей резервуара очистительного устройства;
  • расщеплять илистый осадок на дне камеры септика;
  • устранять разные засоры;
  • избавляться от неприятных запахов;
  • производить чистую воду, годную для полива растений;
  • защищать грунтовые воды от загрязнения.

Выделяют два вида активно действующих бактерий, которые применяют в очистных сооружениях:

  • Анаэробные.
  • Аэробные.

Чтобы выяснить, чем отличается эти микроорганизмы, необходимо узнать особенности их жизни и основы действия.

Основные принципы анаэробной очистки

Бактерии, живущие в среде без доступа воздуха, называются анаэробными микроорганизмами, или анаэробами. Какую роль они играют в процессе переработки стоков?

1. Как появились анаэробы?

Штаммы бактерий, живущих без воздуха, имеют природное происхождение и существуют от создания мира. Их не выводили специально в лабораториях для использования в бытовых целях. Хотя в настоящее время ученые уже занимаются целенаправленной разработкой более быстрых микроорганизмов. Бактерии для септиков относятся к биопрепаратам и не вредят природе.

Микроорганизмы, которым не нужен кислород, обитают в болотах, влажных почвах на значительной глубине. Многие из них формируют плодородный слой земли за счет переработки разлагающихся объектов флоры и фауны.

Очистка канализационных вод проводится в закрытых резервуарах. Например, на дачах часто устанавливают уличный туалет, в котором отходы жизнедеятельности перерабатываются анаэробными бактериями. Эти микроорганизмы производят метан и тепло.

Анаэробные микроорганизмы используют для выгребных ям и септиков, купить бактерии можно в любом хозяйственном магазине. Такой же принцип переработки стоков применяют в промышленных установках (метантенках), на фермах для животных и птицефабриках.

2. Условия жизнедеятельности бактерий.

Для функционирования микроорганизмов необходимо создать подходящие условия, среди них:

  • закрытое пространство без доступа воздуха (исключая факультативные анаэробы);
  • температура – от 9 до 37 градусов тепла, комфортный параметр – +28 градусов;
  • кислотность в пределах от 6 до 8;
  • регулярная очистка – извлечение отложений со дна.

В результате работы бактерий часть компонентов оседает на дно и перерабатывается, некоторые включения поднимаются в верхние слои жидкости. Вода при этом мутная, с черным оттенком. Если в накопительную емкость попадет много свежего воздуха, бактерии погибнут.

Пониженные температуры снаружи и тем более мороз негативно сказываются на жизни бактерий. Чтобы избежать гибели микроорганизмов, необходимо делать утепление для септика.

Анаэробные микроорганизмы живут только в жидкой среде, то есть ⅔ резервуара должна занимать вода. По этой же причине необходима регулярная очистка накопителя от твердых осадков, иначе бактерии просто погибнут.

Рекомендуется тщательно выбирать размеры накопительных камер, учитывая состав семьи и будущие условия использования.

3. Как проходит анаэробная очистка?

Разложение биологических остатков в резервуарах проходит в два этапа. На первоначальном этапе жидкость бурлит и бродит, при этом выделяются газы и неприятные запахи.

Очистка протекает медленно. В этот период формируется новый ил серо-зеленого оттенка, источающий гнилой запах. Некоторые частицы ила открепляются от стенок и смещаются в верхние слои воды с пузырьками воздуха.

Спустя некоторое время в результате закисания жидкости газ вытесняет из камеры кислород, заполняя собой все свободное пространство. Таким образом, создается идеальная среда для жизни и размножения анаэробных бактерий для септиков. Следующий этап распада органических отходов – метановое брожение.

Протекание этой фазы принципиально отличается от первой, и результаты будут совершенно другими. В резервуаре происходят щелочные реакции. Неприятный запах уходит, иловые накопления приобретают темную, почти черную окраску.

Если в накопительную камеру положить часть черного ила с анаэробными бактериями, то расщепление стоковых отходов будет происходить активнее и результативнее.

Когда нет готового ила, можно купить специальный препарат – биоактиватор. Он представлен в таблетированной форме, а также в виде порошка и раствора. В состав препарата входят компоненты анаэробных бактерий в неактивном состоянии.

С помощью микроорганизмов биологические отходы в выгребной яме быстро расщепляются на твердые частицы, газ и воду. В септике из двух резервуаров стоки очищаются на 65–70 процентов.

Для ускорения разложения биологических отходов в септиках-накопителях и выгребных ямах применяют препараты на основе сухих спор анаэробных бактерий.

Такие микроорганизмы существуют в герметично закрытых резервуарах. Они производят сначала окисление, потом сбраживание сточных вод.

Препараты с бактериями продаются в порошкообразном виде, а также в виде растворов. Сухие гранулы можно добавлять сразу с камеру накопителя, но для лучшей эффективности рекомендуется растворить их в воде.

Как работают бактерии для септиков? Анаэробные микроорганизмы устраняют дурные запахи, разлагают продукты жизнедеятельности на воду и твердый осадок, образующий илистый слой. Последний необходимо убирать из резервуара как минимум два раза в год. Для этого вызывают ассенизаторскую машину.

Достоинства анаэробной очистки:

  • маленький объем бактериальной биомассы;
  • качественная минерализация органики;
  • отсутствие доступа воздуха и необходимости в дополнительном оборудовании для септика;
  • возможность получения метана (в большом объеме) и дальнейшего его применения.

Из минусов подобной системы очистки выделяют необходимость соблюдать ряд требований для бактерий: температурный режим, показатели pH, регулярное освобождение резервуара. Твердый осадок, который накапливается на дне камеры, не является питательной средой для микроорганизмов, поэтому требуется его откачка из септика.

Особенности аэробной очистки

Аэробные бактерии не могут жить без кислорода. Они также применяются для биологического разложения отходов из канализации в очистных системах и септиках.

Читайте также:
Станок для заточки цепей бензопил своими руками

Бактерии для септиков, конкретно аэробные, нуждаются в совершенно других условиях, нежели анаэробные микроорганизмы. Им нужно пространство, в которое будет обеспечен доступ свежего воздуха. В герметичном отсеке аэробные бактерии не растут и не перерабатывают биологические отходы.

С целью обеспечения эффективной деятельности микроорганизмов устраивают принудительную подачу кислорода в резервуары септика, а не просто делают вентиляционные отверстия.

Подобная очистная система включает в себя несколько частей. Воздух нагнетается в септик при помощи компрессора. Аппарат монтируют в отапливаемом помещении на небольшом удалении от выхода канализационных труб из дома. Воздуховод прокладывают от компрессора к септику в том же месте, где находятся сливные трубы в грунте.

Непосредственно в накопители кислород попадает из труб с отверстиями, опущенных в воду. Они называются аэраторы. Регуляция подачи воздуха осуществляется с помощью вентилей, расположенных рядом с люками.

Выходящий из отверстия аэратора кислород поднимается в верхние слои жидкости, насыщая стоки. Трубки для подачи воздуха периодически нужно чистить.

У первых локальных очистных систем анаэробные бактерии часто вымывались из септиков. Для решения этой проблемы стали использовать специальные текстильные щиты и пластиковые «ершики».

Ткань с небольшим ворсом и волоски из пластмассы задерживают размывание полезного ила, в котором разрастаются бактерии.

Для работы системы глубокой очистки канализационных сбросов необходимы аэробные бактерии, которые действуют только при поступлении в камеру кислорода.

Нагнетанием воздуха в камеры ЛОС занимаются аэраторы и компрессоры. Их дополнительно устанавливают и подключают к электросетям.

Лучшие бактерии для септиков очищают воду на 93–98 процентов. Чтобы откачать из сливной ямы минеральный осадок, необходимо пользоваться услугами ассенизаторов раз в год.

Жидкость, прошедшая очистку, осветление и обеззараживание в септике, сливается в грунт, сточный водоем или канаву.

Полученный ил достают из накопительных камер и применяют для удобрения после некоторого периода выдержки в компостных кучах.

Биологическая очистка стоков невозможна, если в канализацию сливают средства для мытья посуды, стиральный порошок, лекарства. Эти вещества убивают микроорганизмы, участвующие в расщеплении отходов. Не допускайте попадания вредных химических соединений, в частности хлора.

Плюсы и минусы использования аэробных бактерий в септиках

Большинство современных станций глубокой очистки состоят из нескольких камер, в одной из которых находятся аэробные бактерии. Такие микроорганизмы намного лучше, чем анаэробные бактерии.

Аэробные бактерии для бетонных септиков справляются с примесями, которые остаются после других видов переработки. Твердый осадок в этом случае отсутствует, небольшой налет легко удаляется вручную.

Для работы устройства глубокой очистки с последующим сбросом воды в водоем устанавливают компрессор и дренажный насос, работающие от электричества.

После переработки аэробными бактериями получается ил, который экологически безвреден, а также может применяться для удобрения почвы с целью выращивания растений на территории. Дурной запах при этом не выделяется.

Самым основным преимуществом является получение условно чистой технической воды. В ней остается всего 3–6 процентов примесей. Существенным минусом при выборе системы очистки могут быть затраты на энергию для питания оборудования. Какие бактерии для септиков применять, решает только пользователь.

Если не налажено электропитание или оно по какой-то причине прерывалось и насос не нагнетал воздух в резервуары несколько часов, аэробные микроорганизмы погибают. Никакие бактерии не живут при попадании в сточные воды моющих средств, поэтому необходимо следить за составом канализационных стоков.

Суть биоактиваторов

Биоактиватор – бактерии для септиков, скомбинированные с ферментами. Они бывают универсальными или специализированного назначения.

К примеру, есть стартовые составы биоактиваторов для реанимации жизнедеятельности бактерий для септиков из бетонных колец. Препарат стоит засыпать после долгого перерыва в использовании септика, после зимнего простоя дачной выгребной ямы.

Продаются средства с усиленным действием. Их рационально применять, если очистная система очень загрязнена. Препараты добавляют некоторое время, а потом возвращаются к стандартным составам.

Средства специального назначения используют, когда нужно освободить камеры или резервуары септика от скопления различных загрязнений, мыльных хлопьев, жировых отложений, которые есть в трубах или на поверхностях емкостей. Подобные составы также применяют ограниченное время.

Если грамотно выбрать средства с бактериями, тогда результат очистки будет намного лучше. Микроорганизмы в состоянии перерабатывать не только биологические отходы, но и частицы из волокон, например бумагу.

Такие комплексные препараты с бактериями для септиков, не боящиеся химии, имеют устойчивость к бытовым средствам, которые обычно попадают в канализационные стоки. Средства обладают экологической безопасностью, не приносят вреда человеку, природе и трубопроводам канализации.

Биоактиваторы снижают количество минеральных отложений до 70–80 процентов. Если грамотно применять подобные средства, пропускная способность магистралей улучшается, предотвращается заиливание накопительных камер, снижается количество болезнетворных бактерий.

Новое Место. Отзыв Егора Кончаловского о монтаже септика:

Положительный эффект от применения биоактиваторов заключается в следующем:

  • Обеспечение быстрого и эффективного расщепления биологических и других соединений.
  • Избавление от дурных запахов.
  • Сильно снижается количество минерализованного не перерабатываемого осадка.
  • Очистка всей канализационной системы.
  • Устранение опасных патогенных микробов и бактерий.
  • Возможность применения подобных препаратов для любой очистной системы и септиков.
  • Большой выбор узкоспециализированных препаратов и составов общего действия для каждого конкретного случая.

Разновидность бактерий по назначению

Составы с живыми бактериями для септиков и выгребных ям делятся на специализированные и универсальные. Среди многообразия выделяют несколько групп:

  • Стартовые составы. Используют для активации жизнедеятельности бактерий после некоторого перерыва в работе системы. К примеру, после зимнего простоя весной запускают в септик подобный состав.
  • Препараты повышенного действия. Загружают, если выгребная яма чрезмерно загрязнена. Нельзя применять их на регулярной основе. После получения результата нужно начать использовать стандартные наборы.
  • Специализированные бактерии. Подходят для определенного вида загрязнения. Если в септике скопилось много жировых отложений, можно воспользоваться жирорастворяющими составами.
Читайте также:
Шумоизоляция пола от соседей снизу: делаем шумоизоляцию в квартире с видео инструкцией

При покупке средств руководствуйтесь рекомендациями для определенной канализационной системы и вида загрязнения. Приобретенные бактерии для септиков можно своими руками засыпать в выгребную яму, не прибегая к помощи специалистов.

Частота использования бактерий для септиков

При первоначальном использовании микроорганизмов в септике вы можете не понимать, как часто стоит добавлять их в накопительную камеру. Прежде всего, необходимо понаблюдать за очистной системой. Если в камере стал появляться неприятный запах, это свидетельствует об уменьшении количества микроорганизмов. Следовательно, необходимо их восстановить. Факторы, влияющие на уменьшение количества бактерий:

  • Низкая температура. Когда очистная система недостаточно утеплена, происходит промерзание камеры, из-за чего гибнут штаммы бактерий. Необходимо проводить качественное утепление конструкции.
  • Агрессивная химия. Нельзя смывать в канализацию хлор, формальдегидные и асептические средства, которые могут убить микроорганизмы.
  • Значительное количество жировых накоплений, которые бактерии не могут расщепить. Если септик сильно загрязнен, способности микроорганизмов делать свою работу снижаются.
  • Долгое неиспользование канализации по назначению. Если в выгребную яму долгое время – более полугода – не сливали стоки, то бактерии, скорее всего, погибли. Для активации микроорганизмов применяют стартовый состав.

Из практических наблюдений стало ясно, что для работы септика не вреден переизбыток бактерий. Недостаток, напротив, сказывается неблагоприятно. Постоянно контролируйте функционирование очистной системы, чтобы при необходимости принять меры по устранению неполадок. Следите за количеством микроорганизмов, если окажется, что недостаточно бактерий для септиков, нужно самому восполнять их недостаток. Многообразие средств с микроорганизмами поможет наладить качественную работу септика.

Анаэробная инфекция

В статье приводится краткое описание анаэробной инфекции, профилактика которой должна осуществляться на всех этапах оказания медицинской помощи, учитывая ее опасность и значимость в повседневной клинической практике.

Анаэробная инфекция – это крайне опасный для жизни и здоровья патологический процесс, причинами которого становятся развитие анаэробной микрофлоры в мягких тканях организма.

Особенностями данного вида инфекции является то, что активизация размножения микроорганизмов наступает лишь при попадании их в среду без доступа кислорода.

Такие условия могут формироваться при попадании микробов в ткани при любом виде ранения.

Потенциально любая рана, проникающая в подкожно-жировую клетчатку может привести к развитию этого вида инфекции. Однако наиболее часто причинами развития данного вида инфекции являются размозженные, огнестрельные, колотые ранения, ожоги и обморожения. При создании благоприятных условий скорость развития инфекции становится настолько быстрой, что без немедленной хирургической помощи состояние больного ухудшается в считанные часы и в большинстве случаев приводит к летальному исходу. Развивающаяся в тканях микрофлора оказывает агрессивное разрушительное воздействие на ткани вызывая их гибель (некробиоз), а также начинает вырабатывать токсины, быстро всасывающиеся в кровь и нарушающие обменные процессы во всех органах и тканях (сердце, легкие, печень, почки) и тем самым замыкая порочный круг развития патологического процесса. Даже при своевременно начатом лечении летальность колеблется в пределах 30-50%. Анаэробные микроорганизмы присутствуют в почве, а так же входят в состав нормальной микрофлоры толстой кишки и вызывают патологический процесс при попадании в рану извне, в момент ранения. Однако отсутствия загрязнения раны почвой, как содержащей большое количество данного вида микроорганизмов носит условный характер, так как спорообразующие микроорганизмы могут присутствовать на коже у здоровых людей не вызывая никаких патологических процессов. Попадание анаэробов в ткани может происходить при оперативных вмешательствах, инвазивных манипуляциях (пункциях, биопсии, экстракции зуба и др.) при нарушении асептики, перфорации внутренних органов, открытых травмах, ранениях, ожогах, укусах животных, синдроме длительного сдавления, криминальных абортах .

Анаэробная инфекция может возникнуть у пациентов любого возраста.

Анаэробные микроорганизмы делятся на облигатные и факультативные: развитие и размножение облигатных анаэробов осуществляется в бескислородной среде; факультативные анаэробы способны выживать как в отсутствии, так и в присутствии кислорода.

Облигатные возбудители анаэробной инфекции делятся на две группы: клостридии и неспорообразующие анаэробы (бактероиды, вейллонеллы, пропионибактерии, пептострептококки, фузобактерии и др.). К факультативным анаэробными бактериями принадлежат кишечная палочка, шигеллы, иерсинии, стрептококки, стафилококки и др.

Симптомы анаэробной инфекции. Независимо от вида возбудителя и локализации очага анаэробной инфекции, различным клиническим формам свойственны некоторые общие черты. В большинстве случаев анаэробная инфекция имеет острое начало и характеризуется сочетанием местных и общих симптомов. Инкубационный период может составлять от нескольких часов до нескольких суток (в среднем около 3-х дней).

Типичным для анаэробной инфекции служит быстрое нарастание симптомов общей интоксикации и позднее проявляющимися местными признаками воспаления вплоть до некробиоза мягких тканей. Резкое, быстрое ухудшение общего состояния больного обычно наступает еще до возникновения местных симптомов. Проявлением эндогенной интоксикации служит высокая лихорадка с ознобами, либо гипотония, выраженная слабость, тошнота, головная боль, заторможенность. Характерны артериальная гипотония, редкое, поверхностное дыхание, учащенный пульс, могут быть замечены синюшность лица, мраморный рисунок на коже, бледность кожных покровов. В зоне развития анаэробной инфекции зачастую возникает интенсивная боль не стихающая даже после приема лекарственных препаратов – при этом в первые часы местных симптомов в данной зоне может быть не замечено. Позднее может появиться грозный симптом – крепитация («хруст снега», при ощупывании пораженной области). Может быть отмечено появление зловонного, сладковатого запаха из раны с геморрагическим окрашиванием, иногда можно заметить выделение пузырьков газа. На развитие гнилостного воспаления также указывает внешний вид раны, окрашивание тканей в серо-зеленый или серо-коричневый цвет, иногда появляются струпы черного цвета.

Читайте также:
Кровля Технониколь: преимущества и виды рулонной продукции, полезные рекомендации по установке | Название сайта

Течение анаэробной инфекции может быть молниеносным (в течение 1 суток с момента операции или травмы), острым (в течение 3-4 суток), подострым (более 4 суток). Анаэробная инфекция часто сопровождается развитием полиорганной недостаточности (почечной, печеночной, сердечно-легочной), инфекционно-токсического шока, тяжелого сепсиса, являющихся причиной летального исхода.

Первичная диагностика основывается на клинических признаках. В верификации возбудителя ведущая роль принадлежит бактериологическому посеву отделяемого раны или содержимого абсцесса. Наряду с клиническими и лабораторными исследования, выполняется рентгенография, при которой обнаруживается скопление газа в пораженных тканях или полостях.

Лечение. Комплексный подход к лечению анаэробной инфекции включает проведение радикальной хирургической обработки (т.е. удаление всех явно нежизнеспособных тканей и выполнение так называемых «лампасных» разрезов на коже во всей области поражения), интенсивной дезинтоксикационной и антибактериальной терапии. Хирургический этап должен быть выполнен как можно раньше – от этого зависит жизнь больного.

Особенности течения анаэробной инфекции нередко требуют проведения повторных операций, вскрытия формирующихся гнойных карманов, обработки ран ультразвуком и лазером, озонотерапии и т.д. При обширной деструкции тканей может быть показана ампутация конечности. Важнейшими составляющими лечения анаэробной инфекции являются интенсивная инфузионная терапия и антибиотикотерапия препаратами широкого спектра действия, зачастую назначается комплекс из трех антибактериальных препаратов. В рамках комплексного лечения анаэробной инфекции находят свое применение гипербарическая оксигенация, ультрафиолетовое облучение крови, методы экстракорпоральной детоксикации. При необходимости пациенту вводится антитоксическая противогангренозная сыворотка.

В случае выявления случая анаэробной инфекции в лечебном учреждении, последнее закрывается на карантин с обязательной генеральной дезинфекцией всех помещений с последующим контролем сотрудниками санитарно-эпидемиологической службы.

Анаэробные организмы

Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.

Анаэробы — обширная группа организмов, как микро-, так и макроуровня:

  • анаэробные микроорганизмы — обширная группа прокариотов и некоторые простейшие.
  • макроорганизмы — грибы, водоросли, растения и некоторые животные (класс фораминиферы, большинство гельминтов (класс сосальщики, ленточные черви, круглые черви (например, аскарида)).

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).

Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Анаэробное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора протонов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.

Содержание

Степень аэробности среды

Для измерения потенциала среды М. Кларк предложил использовать величину pH2 0 — отрицательный логарифм парциального давления газообразного водорода. Диапазон [0-42,6] характеризует все степени насыщения водного раствора водородом и кислородом. Аэробы растут при более высоком потенциале [14-20], факультативные анаэробы [0-20], а облигатные — при наиболее низком [0-10]. [2]

Классификация анаэробов

Согласно устоявшейся в микробиологии классификации, различают:

  • Факультативные анаэробы
  • Капнеистические анаэробы и микроаэрофилы
  • Аэротолерантные анаэробы
  • Умеренно-строгие анаэробы
  • Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам [3] .

До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа — B. abortus) [2]

Умеренно-строгий анаэробный организм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2.

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут — например, представители рода бактерий и архей: Bacteroides, Fusobacterium, Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода [4] — наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O2 − ),перекиси водорода(H2O2), синглетного кислорода(O . ), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:

  • супероксиддисмутаза, элиминирующая супероксид-анион(O2 − ) без энергетической выгоды для организма
  • каталаза, элиминирующая перекись водорода(H2O2) без энергетической выгоды для организма
  • цитохром– фермент, отвечающий за перенос электронов от NAD•H к O2. Этот процесс обеспечивает существенную энергетическую выгоду организму.

Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы — один или два, облигатные анаэробы не содержат цитохромов.

Анаэробные микроорганизмы могут активно воздействовать на среду [2] , создавая подходящий окислительно-восстановительный потенциал среды (напр. Cl.perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH2 0 с величины [20-25] до [1-5], ограждая себя восстановительным барьером, другие — аэротолерантные — в процессе жизнедеятельности продуцируют перекись водорода, повышая pH2 0 [5] .

Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.

Получение энергии путем субстратного фосфорилирования. Брожение. Гниение.

  • Также анаэробные организмы могут получать энергию путем катаболизма аминокислот и их соединений (пептидов, белков). Такие процессы именуют гниением, а микрофлору в энергетическом обмене которой преобладают процессы катаболизма аминокислот называют гнилостной.
  • Анаэробные микроорганизмы расщепляют гексозы (например, глюкозу) разными путями:
    • Гликолиз (Путь Эмдена-Мейергофа) после которого продукт подвергается брожению
    • окислительный пентозофосфатный путь (другие названия: Фосфогликонатный путь, иначе гексозомонофосфатный(ГКМ), иначе путь Варбурга — Диккенса — Хореккера)
    • Путь Энтнера — Дудорова (особенно значимый, когда субстратами служат глюконовая, маннановая, гексуроновые кислоты или их производные)

В качестве примера организма, сбраживающего сахара по пути Энтнера — Дудорова, можно привести облигатно анаэробную бактерию Zymomonas mobilis. Однако ее изучение позволяет предполагать, что Z. mobilis — вторичный анаэроб, произошедший от цитохромсодержащих аэробов. Путь Энтнера — Дудорова обнаружен и у некоторых клостридиев, что еще раз подчеркивает неоднородность эубактерий, объединенных в эту таксономическую группу. [6] .

При этом характерным только для анаэробов является гликолиз, который в зависимости от конечных продуктов реакции разделяют на несколько типов брожению:

  • молочнокислое брожение — род Lactobacillus,Streptococcus, Bifidobacterium, а также некоторые ткани многоклеточных животных и человека.
  • спиртовое брожение — сахаромицеты, кандида (организмы царства грибов)
  • муравьинокислое — семейство энтеробактерий
  • маслянокислое — некоторые виды клостридий
  • пропионовокислое — пропионобактерии(например, Propionibacterium acnes)
  • брожение с выделением молекулярного водорода — некоторые виды клостридий, ферментация Stickland
  • метановое брожение — например, Methanobacterium
Читайте также:
Преимущества покупки квартиры в новостройке: что получает покупатель?

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ. Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н2. Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением pH среды, в то время как расщепление белков и аминокислот — повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

Культивирование анаэробных организмов в основном является задачей микробиологии.

Сложнее дело обстоит с культивированием анаэробных многоклеточных организмов, поскольку для их культивирования часто необходима специфическая микрофлора, а также определённые концентрации метаболитов. Применяется, например, при исследовании паразитов человеческого организма.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах — анаэростатах [7] .

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах — добавление содержащих редуцирующие вещества (глюкозу, муравьинокислый натрий и др.), уменьшающие окислительно-восстановительный потенциал.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона — Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид — аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика. [8]

Среда Китта — Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 — 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak — система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор [9] [10] .

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются — их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Фортнера — посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую — анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) — рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Читайте также:
Спальня в Средиземноморском стиле — украшения и главные дизайнерские идеи + фото

Метод Перетца — в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри. Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально — диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Эндо
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса: К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар, лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Плоскирева (бактоагар Ж) — дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные — красные. В составе среды — агар, лактоза, бриллиантовый зелёный, соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород, на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона — Блера).

Метаболизм анаэробных организмов

Метаболизм анаэробных организмов имеет несколько различных подгрупп:

  • Организмы способные использовать анаэробное дыхание (другие окислители — серу, азот (см.Анаэробное дыхание), хлораты, перхлораты, хроматы и перманганаты [11] )
  • Использующие циклическое фотосинтетическое фосфорилирование (лучевую энергию (чаще всего Солнца)) — фототрофные анаэробы (см. также Аноксигенный фотосинтез)
  • Организмы, энергетический обмен которых опирается на катаболизм высокомолекулярных/высокоэнергетических соединений (например, гликолиз).

Анаэробный энергетический обмен в тканях человека и животных [12]

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путем, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм — перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный — синтез (иначе ресинтез) АТФ при реакции трансфосфорилирования 2 молекул АДФ(аденилатциклаза)
  • Гликолитический — анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием молочной кислоты (иначе именуется «лактатным»).

Необходимо отметить, что прямым следствием гликолиза является критическое снижение рН тканей — ацидоз. Это ведет к снижению эффективного транспорта кислорода гемоглобином, и формирует положительную обратную связь.

Каждый механизм имеет свое время удержания максимальной мощности и оптимум энергообеспечения тканей. Наибольшая мощность и наименьшее время удержания:

  • креатинфосфаткиназный механизм (3600 Дж/(кг·мин), при времени 6—12 сек)
  • лактатный (2510 Дж/(кг·мин), при времени 30—60 сек)
  • аэробный (600 Дж/(кг·мин), при времени около 600 секунд).

Что такое адгезия и почему она так важна в строительстве

Приветствуем тех, кто столкнулся с таким понятием как «адгезия» в строительстве. Знание особенностей этого процесса помогает мастерам добиться качественного нанесения краски и избежать последствий в виде трещин и другого вида брака. Это статья для тех, кто хочет знать больше о нюансах этого явления, неприятных последствиях, грамотной подготовке поверхности для окрашивания и методам повышения сцепления материала с подложкой.

Как связать этот физико-химический процесс со строительством?

«Адгезия (от лат. adhaesio — прилипание), возникновение связи между поверхностными слоями двух разнородных (твёрдых или жидких) тел, приведённых в соприкосновение»

Процесс прилипания в строительстве происходит при нанесении лака, краски, гипсовой смеси, герметика и так далее. Она отвечает за защитные функции покрытия и его долговечность.

Чтобы лучше понять природу адгезии, приведем пример: вы решили наклеить защитную пленку на экран мобильного. Сначала необходимо очистить экран от жирных пятен и пыли спиртовыми салфетками. Если пропустить этот шаг, сцепление будет некрепким и вскоре защитный слой отойдет. Этот же принцип работает и в строительстве

Важность адгезии при покраске

При низком «прилипании» красящего материала к поверхности образуются трещины, краска отслаивается, защитный слой разрушается и назначение покрытия теряет свою эффективность. Нужно отметить, что важную роль в обеспечении лучшей адгезии играет правильная подготовка подложки. Здесь всего четыре этапа:

  1. Удаление старого слоя краски.
  2. Шлифовка.
  3. Выравнивание поверхности и заделка мелких швов и стыков при помощи грунтовки.
  4. Очищение поверхности.

Шлифовка необходима практически всегда, так как она устраняет многие недостатки подложки: устранение ворсинок, неровностей. Шлифованием вы делаете глянцевую поверхность шероховатой. Это способствует лучшему прилипанию краски.

Что касается грунтовки, то этот этап не всегда является обязательным. Дело в том, что излишняя пористость покрытия позволяет проникать смолам в материал и от этого приходится наносить много слоев краски. Шпатлевка как бы нейтрализует лишние поры и это большое преимущество для мастера, так как не нужно наносить множество слоев красящего материала. Грунтовочный слой защищает металл от коррозии, а дерево от воздействия танинов.

Перед нанесением финального слоя протрите поверхность от пыли и любых других загрязнений. Этот простой шаг может оказаться решающим в прилипании краски.

Адгезия в строительных смесях и герметиках

При строительстве здания из блоков или кирпичей важно выбрать подходящий цементно-песчаный состав. Выбрав некачественную смесь, вы рискуете долговечностью и безопасностью строения, так как вскоре кладка начнет разрушаться. Гипсовые смеси для внутренних работ применяются для создания декоративных элементов. Например, при выполнении лепнины важно крепко сцепление, в ином случае есть риск, что весь элемент отпадет.

Читайте также:
Советы по подготовке стен, чтобы избежать шелушения краски

Логично предполагать, что сцепление играет важную роль и в герметиках. Неспроста на современном рынке изобилие герметиков для различных материалов. Последствия выбора неподходящего герметика заключаются в плохом склеивании, иногда и вовсе его отсутствие. Поэтому подбирайте смесь под конкретный материал, так как универсальные составы не всегда работают.

Интенсивность адгезии измеряется в Мегапаскалях (МПа) — это усилие, которое нужно приложить, чтобы отсоединить покрытие от подложки. Для проверки способности материалов к склеиванию существует специальный прибор — адгезиметр

Способность бетона к адгезии

Бетон широко распространен благодаря своим многочисленным преимуществам, но из-за своей гладкой поверхности сцепление с другими материалами слабое. Именно поэтому бетон покрывают несколькими составами перед переходом к финальному слою, то есть здесь цель создать шероховатость, которая отсутствует у материала. При создании шероховатости учитывают как влажность помещения, так и смесей и самого́ бетона. Чем суше, тем выше адгезия. В составе растворов часто присутствует цемент и кварцевый песок, так как маленькие гранулы образуют пористость поверхности.

Повышаем адгезию

Прочитав все вышеперечисленное, вы наверняка уже поняли, что важно для повышения сцепления строительных материалов. Теперь давайте пройдемся по пунктам и добавим кое-что еще:

  • Шлифовка. Удаляйте старые составы до самого основания, так как такие материалы, как лак и краска проникают глубоко. Чтобы создать новое, нужно избавиться от старого.
  • Очищение. Чистота во всем! Не ленитесь лишний раз удалять поверхность от пыли, ворса, жирных пятен. Чем меньше будет лишних частиц, тем больше повышается возможность склеивания.
  • Специальные добавки. Существует множество химических пластификаторов, которые добавляются в грунтовку или наносятся самостоятельным слоем (полиорганосилоксаны, органосиланы, металлорганические вещества, сложные полиэфиры и другие).
  • Шероховатость поверхности. Максимальное прилипание достигается благодаря пористости подложки, именно поэтому важно шкурить или создавать искусственные поры.

Подведем итоги

Всегда выполняйте работу поэтапно, так как это повышает ее качество в несколько раз. Знание адгезионных процессов поможет вам создать качественный продукт, который долгое время не потребует доработок и исправлений.

Что такое адгезия и почему она так важна в строительстве

Адгезия разных материалов

Различные материалы обладают разной степенью адгезии. Это зависит, во-первых, от атомного объема металла, когда адгезия происходит между металлом и пленкой. Чем выше этот показатель, тем хуже сцепка. Алюминий, цинк, олово и свинец хорошо “работают” в этом плане, в отличие от железа и всевозможных сплавов, в основу которых оно входит.

В некоторых случаях низкой адгезия может быть из-за оксидной пленки на поверхности металла.

Для того, чтобы адгезия была максимально возможной, лакокрасочный материал должен максимально затекать во все поры, микротрещины и впадины поверхности.

Для повышения адгезии, окрашиваемый материал перед напылением могут фосфатировать или оксидировать.

Также для улучшения этого показателя в состав клея или полимера добавляют активные добавки. Они имеют особые молекулы: одна их сторона связывается с этим самым полимером, а другая подложкой. Так образуется ориентированный адсорбционный слой.

Если контактируют два одинаковых полимера, то они могут самослипнуться. Это называется автогезией. И прочность их слипания будет постоянно увеличиваться.

Видео

Адгезия материалов

В современном мире встречаются различные виды адгезии материалов. Сегодня адгезия полимеров является не редким явлением. При смешивании разных веществ очень важно, чтобы их активные центры взаимодействовали друг с другом. На границе взаимодействия двух веществ образуются электрически заряженные частицы, которые обеспечивают прочное соединение материалов.

Адгезия клея представляет собой процесс притяжения двух веществ путем механического взаимодействия из вне. Клей применяется для склеивания двух материалов в целях создания одного предмета. Прочность скрепления материалов зависит от того, какой прочностью обладает клей при соприкосновении с отдельными видами материалов. Для склеивания материалов, которые плохо взаимодействуют друг с другом, необходимо усилить действие клея. Для этого можно просто использовать специальный активатор. Благодаря нему образуется прочная адгезия.

Очень часто в современном мире приходится иметь дело со скреплением таких материалов, как бетон и металлы. Адгезия бетона к металлу является достаточно не прочной. Чаще в строительстве применяются специальные смеси, которые обеспечивают надежное скрепление данных материалов. Также не редко применяется строительная пена, которая заставляет металлы и бетон образовывать устойчивую систему.

Методы повышения адгезии

Адгезионные свойства материалов можно как улучшить, так и ухудшить. Это непостоянная величина. Например, в наносимые на поверхность составы добавляются различные примеси, которые повышают способность к проникновению и прилипанию. Используются вещества, играющие роль промежуточного слоя, например специальные грунтовки или контактные жидкости.

Обезжиривание поверхности – еще один верный метод усиления способности к сцеплению.

Для повышения адгезии используют целый комплекс мер, призванных воздействовать на физические и химические свойства материала. Существует 3 способа подготовки поверхности, улучающие адгезию:

  • Механический. Это может быть обработка абразивом для придания шероховатости, нанесение насечек, а также очистка от пыли и любых загрязнений.
  • Химический. Примешивание специальных добавок и пластификаторов в наносимый раствор.
  • Физико-химический. К нему относится обработка грунтовочными составами, а также шпаклевание.

Максимально проявляют эффективность такие методы при сцеплении разнородных поверхностей, обладающих различными физическими и химическими свойствами.

Кроме этого, существует ряд факторов, снижающих качество сцепления материалов:

  • Пыльные или жирные поверхности без предварительной обработки очищающими и обезжиривающими составами склеить практически невозможно.
  • Качество прилипания будет очень низким и в том случае, если одну или обе поверхности обработать составом, снижающим пористость.
  • Адгезионные свойства могут ухудшиться во время схватывания и высыхания материалов. При переходе из жидкого в твердое состояние могут измениться химические и физические свойства веществ. Например, многие растворы дают усадку. В результате этого уменьшается площадь соприкосновения с основанием. Тогда появляются растягивающие напряжения, из-за которых, в свою очередь, образуются трещины. В итоге сцепление материалов становится менее прочным, ненадежным.
Читайте также:
Туя западная Колумна (Thuja occidentalis Columna)

Простой пример. Если оштукатурить бетонную стену без правильной подготовки, покрытие быстро отвалится. Это связано со множеством факторов, к которым относятся:

  • запыление поверхности;
  • усадка штукатурного слоя;
  • отсутствие добавок, усиливающих адгезию и т. д.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Подготовка поверхности потолка к установке натяжного потолка

Поэтому при работе со старым бетоном следует использовать комплексный подход, для которого нужно:

  • тщательно очистить поверхность;
  • нанести насечки топором или перфоратором;
  • обработать специальной грунтовкой, усиливающей адгезию;
  • в штукатурку добавить пластификатор, повышающий эластичность раствора.

Как измеряется адгезия?

Технология измерения адгезии, способы испытания, а также все показатели прочности соединения материалов указаны в следующих нормативах:

  • ГОСТ 31356-2013 – шпаклёвки и штукатурки;
  • ГОСТ 31149-2014 – лакокрасочные материалы;

ГОСТ 27325 – ЛКМ к дереву и т.п.

Способ определения адгезии лакокрасочных покрытий методом решётчатого надреза

Если раньше адгезионные характеристики материалов можно было измерять только в лабораторных условиях, то на данный момент существует множество приборов, которые можно использовать непосредственно на строительной площадке. Большинство методов измерения адгезии, как «полевых», так и лабораторных связаны с разрушением внешнего, покрывающего, слоя. Но есть несколько устройств, принцип действия которых основан на ультразвуке.

Таблица классификации результатов испытания лакокрасочных материалов

    Нож адгезиметр. Используется для определения параметров адгезии методом решётчатых и или параллельных надрезов. Применяется для лакокрасочных и плёночных покрытий толщиной до 200 мкм.

Нож адгезиметр, модель Константа-КН2

Пульсар 21. Устройство определяет плотность материалов. Используется для выявления трещин и расслоений в бетоне как штучном, так и монолитном. Существуют специальные прошивки и подпрограммы, которые по плотности прилегания, позволяют определить прочность адгезии штукатурок различных типов к бетонным поверхностям.

Ультразвуковой измеритель адгезии, Пульсар 21

СМ-1У. Используется для определения адгезии полимерных и битумных изоляционных покрытий методом частичного разрушения – сдвига. Принцип измерения основан на выявлении линейных деформаций изоляционного материала. Как правило, применяется для определения прочности изоляционного покрытия трубопроводов. Допускается использование для проверки качества нанесение битумной гидроизоляции на строительные конструкции: стены подвалов и цокольных этажей, плоские крыши и т.п.

Адгезиметр СМ-1У

Причины плохой адгезии

Если лакокрасочное покрытие или шпаклевка отслаиваются, причина в плохой адгезии. По характеру повреждения можно определить причину дефекта:

  • не подготовлена поверхность (плохо очищена от пыли, не обезжирена, плохо отшлифована);
  • несовместимость компонентов ЛКМ с предыдущим покрытием основания, краски неоднородно ложатся на алюминий, оцинкованное железо;
  • грунт разводился некачественным растворителем;
  • нанесение толстого слоя ЛКМ и других смесей;
  • базовая эмаль пересушена, в этом случае лаку не за что зацепиться;
  • неправильные пропорции при приготовлении шпаклевок из сухих смесей;
  • не выдержан температурный режим.

Адгезия при сварочных работах

Сварка является одним из наиболее прочных методов соединения металлических конструкций. Это сцепление молекул двух элементов без использования промежуточных или вспомогательных веществ — клея или припоя. Происходит данный процесс под воздействием термической активации. Внешний слой соединяемых элементов нагревают выше температуры плавления, после чего происходит межмолекулярное сближение и соединение материалов.

Электросварочный шов. Соединение двух деталей электросваркой является адгезией, так как металл, использующийся в электроде, выступает в качестве адгезива

Препятствием к качественной адгезии при сварке могут служить следующие факторы:

  • наличие оксидных плёнок. Они удаляются механически или химически при подготовке поверхности или исчезают непосредственно в процессе сварки под воздействием высокой температуры или флюсов;
  • несоответствие химического состава материалов и электродов. Особое внимание следует уделять наличию и количеству кремния и углерода в соединяемых деталях. Для соединения сталей разных марок рекомендуется использовать электроды с низким содержанием диффузионного водорода;
  • недостаточная глубина проплавления, которая напрямую зависит от силы тока и скорости передвижение электрода.

Газовая или плазменная сварка металла является когезией, так как молекулы двух элементов соединяются в результате расплава материала

Адгезионные свойства строительных и отделочных материалов как и чем измеряются

Адгезия – это сцепление различных по своему составу и структуре материалов, обусловленное их физическими и химическими свойствами. Термин адгезия произошёл от латинского слова adhesion – прилипание. В строительстве дают более узконаправленное и специфическое обозначение тому, что такое адгезия – это способность декоративно-отделочных покрытий (ЛКМ, штукатурки), герметизирующих или клеящих смесей к прочному и надёжному соединению с внешней поверхностью материала основания.

Впечатляющая демонстрация эффекта адгезии современных клеевых составов

Важно: Следует различать понятия адгезия и когезия. Адгезия соединяет разнотиповые материалы, затрагивая только поверхностный слой, К примеру, краска на металлической поверхности. Когезия– это соединение однотипных материалов, в результате которого образуется межмолекулярные взаимодействия.

Адгезия, что это такое – теоретические основы

Адгезия является одним из ключевых свойств материалов в следующих областях:

  1. Металлургия – антикоррозионные покрытия.
  2. Механика – слой смазки на поверхности элементов машин и механизмов.
  3. Медицина – стоматология.
  4. Строительство. В данной отрасли адгезия является одним из главных показателей качества выполнения работ и надёжности конструкций.

Практически на всех этапах строительства контролируются показатели адгезии для следующих соединений:

  • лакокрасочные материалы;
  • штукатурные смеси, стяжки и заливки;

клеящие составы, кладочные растворы, герметики и т.п.

Пример химической адгезии — реакция соединения силиконового герметика со стеклом

Существует три основных принципа адгезионного соединения материалов. В строительстве и технологии они проявляются следующим образом:

  1. Механический — сцепление происходит путем прилипания наносимого материала к основанию. Механизм такого соединения заключается в проникновении наносимого вещества в поры внешнего слоя или соединении с шероховатой поверхностью. Примером, является окраска поверхности бетона или металла.
  2. Химический — связь между материалами, в том числе различной плотности, происходит на атомном уровне. Для образования такой связи необходимо присутствие катализатора. Примером адгезии такого типа является пайка или сварка.
  3. Физический — на сопрягаемых поверхностях возникает электромагнитная межмолекулярная связь. Может образоваться в результате возникновения статического заряда или под воздействием постоянного магнитного или электромагнитного поля. Пример использования в технологии — окрашивание различных поверхностей в электромагнитном поле.

Адгезионные свойства строительных и отделочных материалов

Адгезия строительных и отделочных материалов осуществляется, преимущественно, по принципу механического и химического соединения. В строительстве используется большое количество различных веществ, эксплуатационные характеристики и специфика взаимодействия которых кардинальным образом отличаются. Разделим их на три основные группы и охарактеризуем более подробно.

Лакокрасочные материалы

Адгезия ЛКМ к поверхности основания осуществляется по механическому принципу. При этом, максимальные показатели прочности достигаются в том случае, если рабочая поверхность материала имеет шероховатости или пористая. В первом случае существенно увеличивается площадь соприкосновения, во втором, краска проникает в поверхностный слой основания. Кроме того, адгезионные свойства ЛКМ увеличиваются благодаря различным модифицирующим добавкам:

  • органосиланы и полиорганосилоксаны оказывают дополнительное гидрофобизирующее и антикоррозионное действие;
  • полиамидные и полиэфирные смолы;
  • металлоорганические катализаторы химических процессов отвердения ЛКМ;
  • балластные мелкодисперсные наполнители (к примеру, тальк).

Краска с тальковым наполнителем — не вспучивающийся антипирен

Строительные штукатурки и сухие клеящие смеси

До недавнего времени, строительные и отделочные работы велись с использованием различных растворов на основе гипса, цемента и извести. Зачастую, их смешивали в определённой пропорции, что давало ограниченное изменение их основных свойств. Современные готовые сухие строительные смеси: стартовые, финишные и мультифинишные штукатурки и шпаклевки, имеют гораздо более сложный состав. Широко применяются добавки различного происхождения:

  • минеральные – магнезиальные катализаторы, жидкое стекло, глиноземистый, кислотоустойчивый или безусадочный цемент, микрокремнезём и т.п
  • полимерные – диспергируемые полимеры (ПВА, полиакрилаты, винилацетаты и т.п.).

Такие модификаторы существенно изменяют следующие основные характеристики строительных смесей:

  • пластичность;
  • водоудерживающие свойства;
  • тиксотропность.

Пример плохой адгезии штукатурки к кирпичной стене

Важно: Использование полимерных модификаторов дает более выраженный эффект усиления адгезии. Однако образование устойчивых соединений полимерных пленок на границе разнотипных материалов (основание — твердеющая штукатурка) возможно только при определенной температуре. Этот термин называется минимальной температурой пленкообразования-МТП. У разных штукатурок она может быть различной от +5°С до +10°С. Во избежание расслоения , необходимо точно придерживаться рекомендаций производителя относительно температуры, как основания, так и окружающей среды.

Герметики

Герметики, использующиеся в строительстве, различают по трём различным типам, каждый из которых требует определённых условий для высокопрочной адгезии с материалом основания. Рассмотрим каждый тип подробнее.

    Высыхающие герметики. В состав входят различные полимеры и органические растворители: бутадиен-стирольные или нитрильные, хлоропреновый каучук и т.п. Как правило, имеют пастообразную консистенцию с вязкостью 300-550 Па. В зависимости от вязкости, наносятся либо шпателем, либо кистью. После их нанесения на поверхность, необходимо определённое время для высыхания (испарения растворителя) и образования полимерной плёнки.

Высыхающий акриловый герметик
Не высыхающие герметики. Состоят, как правило, из каучука, битума и различных пластификаторов. Имеют ограниченную устойчивость к высокой температуре, не более 700С-800С, после чего начинают деформироваться.

Битумный не высыхающий состав, используется для герметизации ливневой водосточной системы
Отверждающиеся герметики. После их нанесения, под воздействием различных факторов: влага, тепло, химические реагенты, происходит необратимая реакция полимеризации.

Приготовление двухкомпонентного полиуретанового герметика Сазиласт

Из всех перечисленных разновидностей, отверждающиеся герметики обеспечивают максимальную надёжность сцепления с микро неровностями поверхности основания. Кроме того, они устойчивы к высоким температурам, механическим и химическим воздействиям. Они имеют оптимальное сочетание жёсткости и вязкости, позволяющее сохранять первоначальную форму. Однако, являются наиболее дорогостоящими и сложными в использовании.

Как измеряется адгезия?

Технология измерения адгезии, способы испытания, а также все показатели прочности соединения материалов указаны в следующих нормативах:

  • ГОСТ 31356-2013 – шпаклёвки и штукатурки;
  • ГОСТ 31149-2014 – лакокрасочные материалы;

ГОСТ 27325 – ЛКМ к дереву и т.п.

Способ определения адгезии лакокрасочных покрытий методом решётчатого надреза

Если раньше адгезионные характеристики материалов можно было измерять только в лабораторных условиях, то на данный момент существует множество приборов, которые можно использовать непосредственно на строительной площадке. Большинство методов измерения адгезии, как «полевых», так и лабораторных связаны с разрушением внешнего, покрывающего, слоя. Но есть несколько устройств, принцип действия которых основан на ультразвуке.

Таблица классификации результатов испытания лакокрасочных материалов

  • Нож адгезиметр. Используется для определения параметров адгезии методом решётчатых и или параллельных надрезов. Применяется для лакокрасочных и плёночных покрытий толщиной до 200 мкм.

Нож адгезиметр, модель Константа-КН2
Пульсар 21. Устройство определяет плотность материалов. Используется для выявления трещин и расслоений в бетоне как штучном, так и монолитном. Существуют специальные прошивки и подпрограммы, которые по плотности прилегания, позволяют определить прочность адгезии штукатурок различных типов к бетонным поверхностям.

Ультразвуковой измеритель адгезии, Пульсар 21
СМ-1У. Используется для определения адгезии полимерных и битумных изоляционных покрытий методом частичного разрушения – сдвига. Принцип измерения основан на выявлении линейных деформаций изоляционного материала. Как правило, применяется для определения прочности изоляционного покрытия трубопроводов. Допускается использование для проверки качества нанесение битумной гидроизоляции на строительные конструкции: стены подвалов и цокольных этажей, плоские крыши и т.п.

Адгезиметр СМ-1У

Факторы, снижающие адгезию материалов

На снижение адгезии оказывают влияние различные физические и химические факторы. К физическим относится температура и влажность окружающей среды в момент нанесения декоративно-отделочных или защитных материалов. Также снижают адгезионные взаимодействия различные загрязнения, в частности, пыль покрывающая поверхность основания. В процессе эксплуатации влияние на прочность соединения лакокрасочных материалов может оказывать ультрафиолетовое излучение.

Химические факторы, снижающие адгезию, представлены различными материалами загрязняющими поверхность: бензин и масла, жиры, кислотные и щелочные растворы и т.п.

Также адгезию отделочных материалов могут снижать различные процессы, возникающие в строительных конструкциях:

  • усадка;
  • растягивающие и сжимающие напряжения.

Методы повышения адгезии

В строительстве существует несколько универсальных способов повышения адгезии декоративных отделочных материалов с поверхностью основания:

  1. Механический – поверхности основания придают шероховатость, чтобы увеличить площадь соприкосновения. Для этого её обрабатывают различными абразивными материалами, наносят насечки и т.п.
  2. Химический – в состав наносимых защитно-отделочных материалов добавляют различные вещества. Это, как правило, полимеры, образующие более прочные связи и придающие материалу дополнительную эластичность.
  3. Физико-химический – поверхность основания обрабатывают грунтовкой, изменяющей основные химические параметры материала и оказывающей влияние на определённые физические свойства. К примеру, снижение влагопоглощения у пористых материалов, закрепление рыхлого внешнего слоя и т.п. Обработка поверхности основания перед покраской абразивной шкуркой

Грунтование поверхности перед нанесением штукатурки

Способы увеличения адгезии к различным материалам

Более подробно остановимся на методах повышения адгезии для различных материалов, применяемых в строительстве.

Бетон

Бетонные стройматериалы и конструкции повсеместно применяются в строительстве. За счёт высокой плотности и гладкости поверхности их потенциальные адгезионные показатели довольно низкие. Для увеличения прочности соединения отделочных составов необходимо учесть следующие параметры:

  • сухая или влажная поверхность. Как правило, адгезия к сухой поверхности выше. Однако были разработаны множество клеевых смесей, требующих предварительного смачивания поверхности основания. В данном случае необходимо обращать внимание на требования производителя;
  • температура окружающей среды и основания. Большинство отделочных материалов наносится на бетонные поверхности при температуре воздуха не менее +5°С…+7°С. При этом бетон не должен быть замёрзшим;
  • грунтовка. Используется в обязательном порядке. Для плотных бетонов, это составы с наполнителем из кварцевого песка (бетонконтакт), для пористых бетонов (пено-, газобетон), это грунтовки глубокого проникновения на основе акриловых дисперсий;
  • добавление модификаторов. Готовые сухие штукатурные смеси уже имеют в своем составе различные адгезионные добавки. Если штукатурка замешивается самостоятельно, то в неё рекомендуется добавить: ПВА, акриловую грунтовку, вместо такого же количества воды, силикатный клей, придающий отделочному материалу дополнительные влагоотталкивающие свойства. Результат нанесения цементной штукатурки на переохлажденную поверхность основания

Нанесение кварцевой грунтовки Knauf бетонконтакт

Металл

Ключевую роль в прочности соединения лакокрасочных материалов с металлической поверхностью играет способ и качество подготовки поверхности. В домашних условиях рекомендуется выполнить следующие действия:

  • обезжиривание – обработка металла различными растворителями: 650, 646, Р-4, уайт-спирит, ацетон, керосин. В крайнем случае, поверхность протирается бензином;
  • матирование – обработка основания абразивными материалами;
  • грунтование – использование специальных красок праймеров. Они реализуются в комплекте с декоративными ЛКМ определённого типа.

Алюминий также подвержен коррозии, особенно при воздействии агрессивных веществ

Древесина и древесные композиты

Древесина является пористой поверхностью с большим количеством неровностей и не испытывает особых проблем с прочностью соединения отделочных материалов. Но нет предела совершенству, поэтому были разработаны различные технологии для улучшения адгезии в сочетании с сохранением защитных и декоративных свойств самой отделки. Их использование, к примеру, в сочетании с акриловыми красками, значительно улучшает атмосферостойкость, устойчивость к ультрафиолетовому выцветанию, придает биологическую защиту материалу. Поверхность древесины обрабатывается самыми разнообразными грунтовками, чаще всего, на основе бор азотных соединений и нитроцеллюлозы.

Адгезия при сварочных работах

Сварка является одним из наиболее прочных методов соединения металлических конструкций. Это сцепление молекул двух элементов без использования промежуточных или вспомогательных веществ — клея или припоя. Происходит данный процесс под воздействием термической активации. Внешний слой соединяемых элементов нагревают выше температуры плавления, после чего происходит межмолекулярное сближение и соединение материалов.

Электросварочный шов. Соединение двух деталей электросваркой является адгезией, так как металл, использующийся в электроде, выступает в качестве адгезива

Препятствием к качественной адгезии при сварке могут служить следующие факторы:

  • наличие оксидных плёнок. Они удаляются механически или химически при подготовке поверхности или исчезают непосредственно в процессе сварки под воздействием высокой температуры или флюсов;
  • несоответствие химического состава материалов и электродов. Особое внимание следует уделять наличию и количеству кремния и углерода в соединяемых деталях. Для соединения сталей разных марок рекомендуется использовать электроды с низким содержанием диффузионного водорода;
  • недостаточная глубина проплавления, которая напрямую зависит от силы тока и скорости передвижение электрода.

Газовая или плазменная сварка металла является когезией, так как молекулы двух элементов соединяются в результате расплава материала

Подводя итоги

Адгезия является одной из важнейших характеристик многих процессов современного строительства, поэтому для её увеличения разрабатываются всё новые методы. Их применение обеспечит большую долговечность строительным конструкциям и отделочным материалам, что в конечном итоге даст существенную экономию.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: