Что такое карбид? Описание, особенности, применение и цена карбида

Что такое карбид. Свойства карбида. Применение карбида

Газовая сварка выполняется посредством использования горючих газов, главное место среди которых занимает ацетилен. Газ, смешиваясь с кислородом, выдает наивысшую температуру сварочного пламени — до 3200 градусов. Его получают в заводских условиях и, упакованным в специальные баллоны, доставляют к месту проведения сварочных работ. Другой способ добычи ацетилена – использовать генератор, который производит газ непосредственно там, где нужна сварка. Главный компонент для работы генератора — это карбид.

Материал представляет собой вещество темно-серого или коричневатого оттенка с химической формулой СаС2. Взаимодействуя с водой он делится на ацетилен и гашеную известь. По теоретическим расчетам из одного килограмма чистого карбида кальция можно добыть 370 дм³ газа, но в реальности сказывается присутствие примесей, и результат получается несколько иной – всего около 280 дм³.

Кроме того, фактический выход ацетилена зависит от размера кусков карбида, его однородности. На продолжительность реакции влияет степень грануляции карбида и температура распада. Процесс гидролиза карбида кальция выглядит следующим образом: СаС2 + Н2О = С2Н2 + Са(ОН). Фактическая потребность в воде на 1 кг сухого вещества колеблется в пределах от 5 до 20дм³.

Как выглядит карбид?

Чтобы определить, где найти карбид на улице, нужно знать его физические свойства. Физически вещество является твердым, его цвет может быть темным, имея сероватый или коричневый оттенок. Цвет зависит от количества углерода. Также имеется специфический запах, который характеризует данное вещество.

По консистенции он твердый, но легко крошится, превращаясь в порошок. Если поднести спичку, то начнется горение с выделением углерода и разложением кальция. Правда, этого можно достичь при высоких температурах, например охотничьей спичкой.

Метод производства

Карбид производится в электропечах путем сплавления (прокаливания) смеси кокса и оксида кальция (негашеной извести) при температуре от 1900°C до 2300°C. Резкий и неприятный чесночный запах карбида и вырабатываемого ацетилена вызван содержанием в карбидной смеси примесей фосфидов и сульфатов кальция.

Процесс осуществляется в несколько этапов:

  1. Производится обжиг известняка.
  2. Из обработанной извести и кокса создается порошкообразная смесь — шихта.
  3. Полученная смесь прокаливается в электродуговой печи до состояния расплава.
  4. Образовавшиеся бруски карбида дробятся для получения нужной фракции.

Средняя плотность карбидного вещества составляет 2,2 г/см3. В зависимости от содержания примесей, цвет карбида может быть темно-коричневым или темно-серым.

Конечный продукт состоит из 75-78% CaC2, остальное составляет известь и примеси. Гранулы карбида существуют разных размеров: 2×8; 8×15; 15×25; 25×80 мм. Большие гранулы обеспечивают получение большего количества ацетилена, но увеличивают время реакции. Если гранулы 8х15 и 15х25 мм разлагаются за 5-6 минут, то для разложения гранул 25х80 мм требуется более 10 минут.

Качественная реакция

Мало знаний о том, где найти карбид, необходимо удостовериться в подлинности вещества. Для качественной реакции понадобится всего лишь немного воды (на улице можно воспользоваться даже собственной слюной). При взаимодействии CaC2 происходит выделение метана и гидроксида кальция. Можно наблюдать характерное шипение, а если поднести в этот момент спичку — воспламенение.

Из-за бурной реакции с водой карбид разлагается от атмосферной влаги. Поэтому вопрос о том, где найти карбид кальция на улице, весьма спорный. Известно, что в чистом виде его не существует, данное соединение является в большей части искусственным, нежели природным.

Применение в промышленности

Карбид кальция является важным соединением для получения ацетилена, газа, который используется при кислородной сварке и обработке металлов. При горении с кислородом ацетилен способен достигать 3150 градусов Цельсия. Это позволяет работать с тугоплавкими металлами, требующими температуру вдвое большую,чем температура плавления самого металла.

Карбид бора используется как огнеупорный материал, поскольку температура плавления такого соединения выше 2400 градусов. При этом он же встречается в бронежилетах,так как способен защитить не только от пуль и осколков, но и от радиации. Для покрытия промышленного и строительного инструмента используют карбид титана. Его прочность позволяет повысить износостойкость деталей и обрабатывать даже самые прочные материалы.

Применение вещества

Кальция карбид активно применяется в промышленности. Он является катализатором в сфере синтеза органических соединений. С его помощью стало возможным синтезировать каучук за более низкую цену. Однако для этого вначале необходимо провести необходимые химические реакции для синтеза собственного карбида, а уже потом — каучука. Все больше химиков задаются вопросом о том, где найти карбид в природе, чтобы облегчить себе работу.

Карбид нашел свое применение в садоводстве. На его основе фермеры получают удобрение под названием цианид кальция. Применяется для улучшения роста корневой системы саженцев и взрослых растений.

Область применения

Карбид кальция (Calcium carbide) используется для получения цианамида кальция (методом реакции с азотом), из которого синтезируют цианистые соединения и удобрения, производства карбидно-карбамидных регуляторов роста растений и карбидного порошкового реагента.

Без этого вещества не обходится и проведение автогенных работ и освещения, изготовление ацетиленовой сажи и других материалов: синтетического каучука, алконитрила, стирола, винилхлорида, уксусной кислоты, хлорпроизводных ацетилена, искусственных смол, этилена, ацетона и др. Также оно применяется в процессе газосварки, производстве карбидных ламп.

Из специальной фракции calcium carbide (прошедшей переработку с применением отходов и некондиционного сырья) путем реакции с водой получают газ ацетилен и побочный продукт – гашеную известь. Эта процедура сопровождается выделением значительного количества тепла. Объем получаемого газа зависит от чистоты карбида кальция (чем чище материал, тем больше выйдет ацетилена) и варьируется в пределах 235-285 л от 1 кг карбида.

Теоретически для разложения 1 кг calcium carbide требуется 0,56 л воды, но на практике используют от 5 до 26 л жидкости, чтобы лучше охладить ацетилен и обеспечить безопасность процесса. Быстрота разложения будет зависеть от грануляции и чистоты исходного материала, а также от температуры и чистоты воды (чем чище и меньше размер, больше температура, тем выше скорость реакции).

Читайте также:
Шлюмбергера (декабрист). Размножение. Пошаговая инструкция с фото

Меры предосторожности

CaC2— нестабильное соединение, которое склонно взрываться. Дело в том, что кальций может вступить даже в реакцию с воздухом, а в результате реакции образуются летучие газы. Малейшая искра способна вызвать моментальное возгорание с выделением огромного количества тепла и метана, что повлечет за собой печальные последствия. Поэтому транспортировать вещество необходимо в герметичных контейнерах.

Любителям лайвхаков и «острых экспериментов» с карбидом стоит позаботиться о собственной безопасности. При работе с веществом следует надеть специальные перчатки, если взять карбид голыми руками, то их будет невозможно помыть. Реакция с водой вызывает не только выброс метана и теплоты, поэтому ожог кожи будет обеспечен.

Техника безопасности при работе с карбидом кальция.

Как уже Вам известно, карбид кальций – это взрывоопасное вещество и для обеспечения безопасной работы с ним необходимо выполнять несколько обязательных правил при использовании карбида для сварки. Главные положения, которые необходимо выполнять при сварочных работах на основе карбида кальция:

  • Учитывайте, что карбид кальция активно взаимодействует с воздухом и водой, выделяя легковоспламеняющийся ацетиленовый газ
  • Место хранения карбида для сварки должно быть сухим и герметичным.
  • Карбид кальция также взрывоопасен, поэтому искры и открытый огонь рядом с веществом строго воспрещены.
  • Пыль карбида (куски менее 2 мм) вызывают раздражения, попадая на кожу, глаза и слизистую оболочку рта, и носа.
  • Регулярные сварочные работы с применением карбида кальция должны проводиться в специально оборудованном для сварки помещении, в котором нет горючих веществ, и присутствуют только несгораемые материалы. Жизненно важно, чтобы все оборудование, связанное с хранением и производством ацетилена было изолировано в отдельных отсеках сварочной мастерской, а само помещение для генераторов должно легко проветриваться и в случае чего деактивироваться.
  • Установка генераторов ацетилена строго запрещена в подвальных комнатах.
  • После завершения сварочных работ с применением карбида кальция как «топлива», в генераторах все оставшееся вещество дорабатывается, и полученные шлаки в виде известкового ила удаляем из генератора в специальную яму или бункер.
  • Напомним, что карбид и ацетилен – взрывоопасные вещества. Поэтому курение, открытый огонь на расстоянии до 10 метров от места хранения отработанного карбида строго воспрещено.
  • При перевозке и хранении ацетиленовых баллонов, на конструкцию клапанов должны быть навинчены предохранительные колпаки. Толчки и удары при транспортировке нескольких баллонов смертельно опасны. Хранение и перевозка ацетиленовых баллонов с другими веществами не допустима.

И напоследок отметим, что карбид кальция является высокоинтенсивным веществом для получения ацетиленового газа, что сводит к минимуму его расход. Кроме того, один килограмм ацетилена, полученного из карбида кальция, выделяет тепла около 8 тысяч кДж.

Интересные факты

Карбид кальция был впервые получен известным химиком Эдмундом Дэви. Ученый получал его путем нагревания уксусного кальция. В результате получался карбид кальция, но это не все. Знаменитый химик заметил, что при взаимодействии с водой выделяется бесцветный взрывоопасный газ, не имеющий запаха. Так был открыт всем известный ацетилен (он же метан или двуглеродистый водород). Это было одним из великих открытий в сфере органической химии, а позже дало начало производству органических соединений, таких как каучук, смола, стирол.

Производство карбида

Что такое карбид кальция? Это продукт, получаемый в результате термической реакции окиси кальция и кокса. Основным сырьем для его производства служат известняки, к которым предъявляются особые требования. Сырье должно быть однородным, поэтому карбидные предприятия обычно работают на известняках из хорошо изученных месторождений. Технологический процесс складывается из нескольких этапов:

  • обжиг известняка в специальных печах;
  • приготовление шихты;
  • получение карбидного сплава;
  • дробление и разделение на фракции конечного продукта.

Сам материал и его производство относится к разряду взрыво- и огнеопасных. Поэтому государственными нормативами предусмотрено строжайшее выполнение правил безопасного хранения и обращения с карбидом кальция. Основные требования таковы:

  • карбид кальция поступает в продажу упакованным в стальные герметично закрытые барабаны или контейнеры;
  • помещение для хранения строится из негорючих материалов; должно быть сухим, закрытым, исключающим попадание влаги, иметь возможность проветривания;
  • в хранилище не допускается наличие водопровода, канализации, водяного отопления;
  • уровень поверхности пола необходимо делать выше нулевой отметки не менее, чем на 20 см;
  • вскрывать барабан разрешается только ручным способом (молоток, зубило) или специальным режущим инструментом (не электрическим);
  • единовременно открытым может быть только один барабан;
  • в случае неполного использования емкость закрывают временной водонепроницаемой крышкой;
  • обязательное наличие средств противопожарной защиты и малой механизации для перемещения продукта.

Емкости с карбидом кальция можно складировать и в горизонтальном, и в вертикальном положении. Свободную тару необходимо хранить в специально отведенных местах.

Где купить?

Мы предлагаем высококачественные химпрепараты по самой выгодной стоимости. Чтобы заказать такие товары у нас, просто нажмите на соответствующую кнопку возле изображения продукта и введите ваши контакты. Мы свяжемся с вами в ближайшее время.

Карбид кальция используется для образование ацетилена. Он являет собой объединение кальция и углерода. Материал создается в электродуговой печи, при температуре до 2300 градусов по Цельсию. Для изготовления плавят кокс и негашеную известь. В жидком состоянии его проливают на специальные приспособления, в которых он затвердевает. Далее полученный материал разделяют на множество кусочков размером до восьми сантиметров.

Его цвет – серый или коричневатый, запах похож на аромат чеснока. Около двадцати пяти процентов состава занимают примеси, известковые окиси и другие элементы. Если карбид бросить в воду, он выделит много тепла.

Читайте также:
Флуоресцентные обои на потолок - особенности и разносидности

Чтобы хранить карбид, нужно соблюдать технику безопасности. Контакт с водой недопустим. Обычно это сырье хранят в герметичных емкостях из кровельной стали. Для сварки не используется пыль – частички размером до двух миллиметров. Они моментально растворяются к воде и могут привести к взрыву.

При контакте с жидкостью карбид выделяет ацетилен – летучий газ, который легко воспламеняется. Это свойство позволяет использовать данное химическое соединение при сварке.

Что такое карбид. Свойства карбида. Применение карбида

Забава детства. Так многие вспоминают о карбиде, особенно бывшие мальчишки, а ныне, конечно, взрослые мужчины.

Они брали камешки на строительных рынках. Покупать не покупали, а так, таскали с развалов и из кузовов грузовиков.

Добычу клали в бутылки , заливали водой, закрывали, встряхивали. Оставалось кинуть тару и полюбоваться взрывом.

Любовались и белесыми пузырями, которые карбид давал, попадая в лужи. Однако, кому обязаны таким весельем, сорванцы прошлых лет, зачастую не знали.

Что такое карбид? Попробуем ответить на вопрос, кажущийся неважным в детстве.

Что такое карбид

Карбит – не конкретное вещество, а группа соединений элементов с углеродом. Последний должен быть более электроотрицательным, чем «сосед».

Это обязательное условие, исключающее из ряда карбидов галогениды и оксиды углерода.

Под электроотрицательностью понимается способность атома сдвигать к себе электроны других веществ.

Электротрицательность углерода равна 2,6. Это данные шкалы Полинга. Она выстроена с учетом, что ионность в ковалентной связи делает эту связь прочнее.

Получается, электротрицательность вторых элементов в карбидах должна быть меньше 2,6.

Большинство подходящих элементов – металлы. Но, около 15% карбидов их не содержат.

Внешне карбиды – кристаллические, как правило, бесцветные, прозрачные вещества. Блеск у них алмазный .

Им соединения обязаны углероду, который является основой не только карбидов, но и алмазов .

По сути, герои статьи являются бриллиантами , в которых часть атомов замещена другими элементами.

Есть и цветные дуэты с углеродом, к примеру, карбид железа. Это всем знакомый цемент. Окрас у соединения серый.

Получается, свойства карбидов могут разниться. Несовпадения рассмотрим в главе «Виды». Пока же, изучим общие характеристики класса соединений.

Свойства карбида

К общим свойствам карбидов относится твердость . Она может быть больше, или меньше, но всегда выше среднего.

У некоторых представителей группы показатель близок к корунду и алмазу . Это самые твердые минералы на земле.

Особенно отличились карбиды переходных металлов. Это элементы побочных подгрупп периодической системы. У всех переходных металлов есть электроны на d- и f-орбиталях.

Обобщает карбиды и высокая температура плавления. Как правило, она выше, чем у входящего в соединение металла.

Если он из переходных, размягчение может начинаться лишь при 3000 градусов Цельсия.

Интересно, что температура плавления поднимается вместе с номером группы, к коей принадлежит «сосед» углерода.

Наиболее тугоплавкими являются карбиды с элементами из 5-7-ой групп таблицы Менделеева .

Где карбид можно понять по структуре соединений. Их решетки, зачастую, дефектны.

Это значит, есть отклонения от теоретической схемы, разрывы и смещения. Именно поэтому свойства карбидов могут в 100, а то и 1000 раз разниться с высчитанными по формулам.

Так, многие соединения класса устойчивы к коррозии и не растворяются в большинстве кислот .

Виды карбидов

Основных видов карбидов три. Первый – ковалентные соединения. Валентность – предрасположенность к определенному числу химических связей.

Ковалентная связь – это перекрытие валентных облаков разных элементов. То есть, у них образуются общие электронные пары. Именно такие лежат в основе ковалентных карбидов.

К ковалентным относятся карбиды лишь двух элементов: брома и кремния . Оба соединения химически инертны. Их межатомные связи прочны.

В итоге, карбиды группы трудно расплавить, — решетка не хочет рушиться. Прочность связи делает оба соединения твердыми.

Карбид брома даже соперничает с алмазом . Некоторые образцы углеродного соединения царапают бриллианты, то есть, тверже них.

Карбид кремния алмаз не «побеждает», но свои достойные 8 баллов по шкале Мооса имеет.

Растворяют ковалентные карбиды лишь плавиковая кислота , концентрированная азотная и царская водка . Окисление карбидов группы происходит лишь при нагреве до 1000 градусов.

Второй вид карбидов – ионный. Его, так же, именуют солеобразным. Все образованны металлами 1-ой и 2-ой групп таблицы Менделеева.

В класс включен и карбид алюминия. Соединения группы разлагаются не только кислотами, но и водой.

Камешки, заставляющие «закипать» лужи, к примеру, — карбид кальция. Он, кстати, довольно токсичен, может разъесть слизистые. Зачем же его завозят на строительные рынки , поймем в следующей главе.

При реакции ионных карбидов с водой выделяется водород. В жидкости формируется и выпадает в осадок гидроксид металла.

Реакция протекает бурно. Резкий выброс на поверхность воды водорода и дает то самое пузырение.

Третий вид карбидов – ионно-ковалентно-металлические, попросту, металлоподобные.

Такие соединения формируются элементами 4-ой, 5-ой, 6-ой, 7-ой групп периодической системы. Исключения: — карбиды никеля, кобальта и железа.

Если у ковалентных карбидов химическая активность низкая, а у ионных – высокая, то у третьего вида соединений она средняя.

Примечательно строение молекул. Их основа – атомы металла. Атомы же углерода находятся в пустотах между ними.

Поэтому, к примеру, карбид вольфрама называют внедренным. Имеется в виду, что углерод внедрился в кристаллическую решетку металла.

Такое строение обеспечивает рекордную прочность и высокую температуру плавления. Еще одно известное соединение группы – карбид титана.

Применение карбида

Карбид титана стал основой безвольфрамовых, но столь же твердых сплавов.

К тому же, соединение служит покрытием инструментария, в основном, промышленного и строительного.

Такое напыление сводит к минимуму износ деталей и позволяет обрабатывать ими даже самые твердые материалы.

Читайте также:
Устройство кровли из катепала: технология

Карбид кремния, так же, используют в качестве абразива. В природном виде, коим является минерал муассанит, соединение цениться ювелирами , причем, выше чем близкий по виду и свойствам фианит .

Карбид кальция нужен при сварочных работах. Из соединения получают ацетилен. Карбид служит его источником, а заодно, и топливом для машин кислородной сварки.

Ацетилен – газ. Одного его достаточно для работы аппаратов. Но, есть еще и вода. Карбид кальция вступает с ней в бурную реакцию.

Итог – не только пузырьки, нравящиеся детям, но и обилие тепла – еще одного источника энергии.

Карбид бора применяют в качестве огнеупора. Температура плавления соединения составляет почти 2500 градусов.

Прочность карбида позволяет добавлять его в бронежилеты. Защитить материал способен не только от пуль, но и радиации.

Поэтому, один из ответов на вопрос, где взять карбид бора, — в защитных экранах, задерживающих излучение.

Список карбидов и их роли в жизни общества может занять многие страницы. Соединений несколько десятков и у каждого из них есть применение, причем, не одно. Нет и единственной схемы получения карбидов.

Придется ограничиться общими фразами. Однако, и в них есть толика полезной информации.

Получение карбидов

Большинство карбидов именно получают, а не добывают. Первый синтез проведен в начале 19-го столетия.

Англичанин по фамилии Дэви получил карбид калия. В 1863-ем создали карбид меди .

Он оказался неустойчивым, в отличие от третьего синтезированного соединения углерода с железом.

Смотря на опытные образцы, ученые не могли понять, где найти карбид за пределами лабораторий.

Минералы, в которых металлы соединены с углеродом открыли лишь в начале 20-го века.

Кроме муассанита , геологи нашли когенит – смесь карбида кобальта с никелем и железом .

Судя по дате открытия карбидных минералов, они не являются распространенными.

Поэтому, в промышленных масштабах героев статьи до сих пор синтезируют. Масса карбида может получиться, к примеру, из древесного угля и оксидов металлов.

Они преобразуются в карбиды при помощи вольтовой дуги и электрической печи .

Цена карбида

Карбид кальция купить предлагают примерно за 40-90 рублей за килограмм. Соединение углерода с бором стоит от 100-та рублей за кило.

Купить карбид кремния предлагают примерно по 160 рублей за 1000 граммов.

А вот за кило карбида гафния придется выложить около 21 000 рублей, причем, при оптовых закупках.

То есть, стоимость материала во многом зависит от присутствующего в нем металла, или неметалла. Существует даже карбид золота.

Он, кстати, способен взорваться при простом пересыпании порошка. Так что, даже за большую цену, доставить сырье потребителю – задача не из легких.

Карбид кальция

При щелочной реакции углерода с металлами могут получится различные карбиды. За счет соединения определенных химических элементов получаются соединения, которые характеризуются высокой прочностью. Довольно большое распространение получил вариант исполнения, который получил название карбид кальция. Его стали применять в самых различных областях промышленности.

Внешний вид и характеристики технического карбида кальция

Впервые рассматриваемый состав был получен в 1862 году. Проводимая процедура касалась отделения кальция от извести, в результате чего получился бледно-серый состав без признаков, свойственных металлам. В результате опыта был получен карбид, который в последствии стал активно использоваться при выпуске различной продукции.

В начале 20 века карбид кальция стали использовать для производства ацетилена в больших объемах. Именно поэтому стали вести активные исследования для выявления более производительной технологии.

Технические характеристики материала определяют его широкое распространение. Внешний вид вещества характеризуется светло-серым цветом, выпускаются карбиды в виде камня или порошка.

Физические свойства

При выборе практически любого материала следует уделять больше всего внимания физическим свойствам. У рассматриваемого они следующие:

  1. Соединение имеет кристаллическую структуру.
  2. Показатель температуры плавления составляет 2300 °С. Стоит учитывать, что подобная цифра свойственна только чистому составу. Добавление в состав различных примесей приводит к тому, что температура плавления существенно падает.

Чистый карбид кальция

Стоит учитывать, что карбид кальция в большинстве случаев находится в твердом состоянии. Кроме этого, цвет может варьироваться от серого до коричневого цвета. Физические свойства карбида кальция определяют его широкое применение в самых различных отраслях промышленности.

Химические свойства

Немаловажное значение имеют и химические свойства. Они также учитываются при применении материала. К основным характеристикам можно отнести следующие качества:

  1. Карбид кальция характеризуется тем, что хорошо впитывает влагу. Стоит учитывать, подобная процедура проявляется яркой химической реакцией, связанной с разложением вещества.
  2. При работе с рассматриваемым материалом стоит учитывать, что образующаяся пыль оказывает раздражительный эффект на слизистые органы. Кроме этого, подобная реакция может проявится при попадании кристаллов или пыли на поверхность кожи. Именно поэтому при работе с рассматриваемым соединением следует использовать респиратор и некоторые другие средства защиты.
  3. Кристаллы активное реагируют на воздействие других веществ зачастую только при нагреве. При этом может образоваться карбонат кальция.
  4. В некоторых случаях проводится соединение кристаллического вещества с азотом, в результате чего получается цианамид кальция.
  5. При нагреве может проходить реакция с мышьяком и хлором, а также фосфором.

Считается, что наиболее важным химическим качеством является податливость к разложению при воздействии воды.

Получение

Как ранее было отмечено, карбид кальция активно применяется при получении самых различных материалов. Именно поэтому процесс получения карбида кальция постоянно совершенствовался. К особенностям применяемых технологий можно отнести нижеприведенные моменты:

  1. В качестве сырья применяется негашеная известь. В большинстве случаев вещество получается из извести, но в домашних условиях провести подобную процедуру сложно.
  2. Известь смешивается с измельченном коксом для получения однородной массы.
  3. В промышленности карбид кальция получают по схеме, которая предусматривает нагрев вещества до высокой температуры. Для этого применяются электронные печи. Рекомендуемая температура плавления составляет 1900 ⁰С.
  4. После нагрева вещества до столь высокой температуры оно переходит в жидкое состояние. Для работы подготавливаются специальные формы.
Читайте также:
Шкаф для мойки на кухню: размер кухонного шкафа 50-60 см

При рассмотрении того, как из углерода получить карбид кальция отметим, что по установленным стандартам в состав должно входить не менее 80% основного вещества. На долю примесей должно приходится не более 25%, в число которых также входит углерод. Производство оксида кальция также приводит к выделению тепловой энергии, что стоит учитывать.

Транспортировка и хранение

Порошок карбида кальция при воздействии влаги практически моментально разлагается. При этом образуется ацетилен, который при большой концентрации горюч и взрывоопасный. Именно поэтому нужно уделять довольно много внимания хранению карбида кальция, для чего часто применяют бидоны и специальные барабаны. К другим особенностям хранения отнесем следующие моменты:

  1. Выделяющийся ацетилен легче воздуха, поэтому скапливается вверху. Стоит учитывать, что он обладает наркотическими действиями, может самовоспламеняться.
  2. При производстве большого объема вещества особое внимание уделяется технике безопасности. Для фасовки применяются специальные упаковки.
  3. Для открытия упаковки следует использовать инструменты, которые не становятся причиной образования искр.
  4. Если вещество попадает на кожу или слизистую оболочку, то его нужно сразу удалить. При этом пострадавшая поверхность обрабатывается специальным кремом или другим защитно-заживляющим веществом.
  5. По установленным правилам, транспортировка может проводится исключительно при применении крытого транспортного средства. При этом проводить доставку по воздуху запрещается.

Контейнер для транспортировки

Установленные правила также запрещают хранить карбид кальция вместе с другими химическими веществами и источниками тепла. Это связано с тем, что образующиеся газы могут вступать в химическую реакцию с другими химическими веществами и возгораться.

Применение карбида кальция

Как ранее было отмечено, карбид кальция встречается в самых различных областях промышленности, зачастую поставляют для проведения промышленного синтеза. Свойства карбида кальция и реакция, протекающая при его соединении с различными веществами, определяют использование вещества в нижеприведенных случаях:

  1. Многие синтетически компоненты, входящих в состав современных материалов, производят на основе рассматриваемого компонента.
  2. Применяется для получения цианамида кальция. Подобный компонент используется для получения различных химических удобрений. Именно поэтому сырье применяется для регулирования скорости роста растений.
  3. Цианамид кальция также получают при соединении вещества с азотом.
  4. В некоторых случаях проводится восстановление металлов щелочной группы.
  5. Можно использовать рассматриваемое соединение в процессе газовой сварки.

При рассмотрении карбида кальция и области применения стоит учитывать, что подобное вещество чаще всего применяют для получения ацетилена. Подобный синтез карбида кальция разработал немецкий ученый. Среди особенностей подобного способа применения отметим следующие моменты:

  1. Ацетилен из карбида получают при оказании воздействия водой на используемое сырье.
  2. В результате прохождения химической реакции образуется требующийся газ, гашеная известь выпадает в осадок.
  3. Стоит учитывать, что при смешивании компонентов выделяется большое количество тепла. Поэтому работа должна проводится с учетом техники безопасности.
  4. В зависимости от вида применяемой технологии переработки сырья с 1 килограмма выходит около 290 литров газа.
  5. Скорость протекания процедуры зависит от чистоты применяемого сырья, температуры и количества воды.

Получение ацетилена из карбида кальция

Как показывает практика, при использовании чистого карбида на протекание химической реакции отводится около 20 литров волы на 1 килограмм сырья. Подобное количество воды требуется для того чтобы снизить температуру реакции, за счет чего обеспечиваются оптимальные условия для работы.

Техника безопасности

При проведении различных химических реакций для производства материалов должна соблюдаться техника безопасности. Как ранее было отмечено, выделяемые вещества могут быть взрывоопасными. Техника безопасности при взаимодействии с различными химическими веществами заключается в следующем:

  1. Для хранения и обработки требуется герметичное место. В обычном гараже проводить работы не рекомендуется.
  2. Нельзя допускать огонь к самому сырью, а также образующимся газам.
  3. Даже мелкие частицы могут привести к поражению кожных покровов. Именно поэтому работа должна проводится в респираторе и защитной одежде.
  4. Генераторы ацетилена размещают исключительно в хорошо изолированных помещениях.
  5. Если сырье применялось при проведении сварочных работ, то следует образующийся шлак утилизировать в специальных местах.
  6. При перемещении металлических и иных емкостей они должны быть надежно закреплены, столкновение и падение не допускается. Это может привести к появлению искр, которые станут причиной взрыва вещества.

Горение карбида кальция

Вышеприведенная информация определяет то, что работы с рассматриваемым сырьем не рекомендуется проводить в гараже или домашней мастерской. Несоблюдении технологии, отсутствии требующего оснащения и многие другие причины могут привести к возникновению искры и воспламенению веществ.

Карбид кальция реакция с водой

Рассматриваемое сырье чаще всего применяется для соединения с водой, в результате чего получается ацетилен. Взаимодействие карбида кальция с водой становится причиной появления газа с неприятным запахом и достаточно большим количеством различных примесей. В чистом виде получить подобное вещество можно только при его многоэтапной очистке.

Реакция карбида кальция с водой может быть проведена опытным путем. К особенностям подобной процедуры отнесем следующие моменты:

  1. В качестве емкости применяется 1,5-литровая бутылка.
  2. После ее заполнения водой добавляется несколько кусочков кристаллического материала.
  3. Протекание реакции приводит к появлению избыточного давления.
  4. После того как карбид кальция больше не вступает в реакцию, на бутылку помещается горящая бумага. В результате взаимодействия между карбидом кальция и водой образуется газ, который взрывается. При рассматриваемом опыте образуется огненное облако.

Подобный опыт довольно опасен и должен быть проведен с соблюдением техники безопасности.

В заключение отметим, что рассматриваемый компонент в последнее время часто применяется для проведения самых различных опытов. Соединение обладает большим количеством свойств, которые должны учитываться. Выделение тепла и газов становится причиной, по которой проводить опыты рекомендуется только в промышленности.

Читайте также:
Чешские смесители для ванной: какие краны из Чехии стоит покупать, Esko и другие популярные бренды, отзывы владельцев о качестве

Свойства и особенности карбидов металлов

В природе металлы активно вступают в химические реакции с кислотами, щелочами и атмосферным кислородом. В большинстве случаев для этого не требуется дополнительная обработка (химическая, термическая). При сильном нагреве металлы начинают активно вступать в реакцию с углеродом, что приводит к образованию сложных соединений под названием карбиды. Эти соединения отличаются рядом необычных свойств — высокая прочность, тугоплавкость, химическая инертность. Какие бывают карбиды металлов? Как эти соединения применяются в промышленности? Какие вещества получили наибольшее применение?

Краткие сведения

Карбиды — это химические соединения, которые состоят из углерода (C) и другого элемента. Обычно в качестве второго элемента выступают металлы — это может быть железо (Fe), титан (Ti), хром (Cr), гафний (Hf) и другие. В карбидных соединениях углерод более высокой электроотрицательностью (в сравнении со вторым элементом). Поэтому карбиды нельзя отнести к оксидам, галогенидам и другим химическим соединениям. Карбиды металлов — в основном твердые тугоплавкие вещества, которые отличаются очень высокой прочностью и почти не вступают в реакции с химически активными веществами.

Благодаря этим необычным свойствам карбиды часто применяют в качестве абразивов для обработки различных сплавов (это может быть чугун, сталь, соединения на основе алюминия). Из них делают электроды для сварки, огнеупорные стержни, элементы электрических систем. Первые карбиды на основе калия, железа и магния были открыты и получены совсем недавно — в XIX веке. Однако со временем были получены и новые карбидные соединения — на основе хрома, титана, гафния, вольфрама, кальция.

Физические свойства, особенности

Карбидные материалы обладают рядом характерных свойств, особенностей. Перечислим их:

  1. Высокая твердость. Атомы углерода и металлов образуют твердую кристаллическую решётку, для разрушения которой потребуется большое механическое усилие. Поэтому с помощью ударов разрушить карбидные вещества будет крайне сложно. Благодаря высокой твердости материалы нашли широкое распространение в различных технических сферах (от военного машиностроения до строительства).
  2. Высокая температура плавления. Плотная кристаллическая решетка обеспечивает устойчивость вещества при сильном нагреве или охлаждении. Средняя температура плавления карбидов находится в пределах от 1500 до 2000 градусов. Поэтому такой материал без проблем выдержит длительное воздействие экстремальных температур (скажем, его можно использовать в печах, металлургических ковшах для расплавления других материалов).
  3. Устойчивость к химическим веществам и коррозии. Внешние электронные оболочки веществ-карбидов являются полностью заполненными. Поэтому такой материал будет редко вступать в химические реакции с другими веществами (он устойчив к воздействию кислот, щелочей, солей). Вещества не вступают в реакцию с водой и атмосферным кислородом, поэтому они не покрываются ржавчиной, что обеспечивает их высокий срок годности.
  4. Повышенная износоустойчивость. Изделия на основе карбидов долгое время сохраняют свою форму даже в случае удара, деформации или воздействия высоких температур. Поэтому они обладают повышенной износоустойчивостью, что делает их срок годности большим. Благодаря повышенной устойчивости материал часто применяют для изготовления абразивных и шлифовальных изделий, которыми можно пользоваться в течение большого срока.

Стоит обратить внимание, что далеко не все карбидные соединения обладают перечисленными свойствами. Скажем, карбид золота (I) чрезвычайно взрывоопасен (тогда как большинство других карбидов металлов — нет). Он может взорваться даже в случае неаккуратного пересыпания вещества на бумажную поверхность. Поэтому при рассмотрении физических и химических свойства карбидов нужно по отдельности рассматривать каждое соединение, поскольку карбидные материалы могут обладать уникальными необычными свойствами.

Разновидности карбидов

Различают несколько разновидностей карбидов в зависимости от конфигурации кристаллической решетки. Тип решетки определяет ряд физико-химических свойства материала, что нужно учитывать при их применении. Рассмотрим основные разновидности кристаллических решеток карбидов:

  • Материалы с ковалентной решеткой. Вещества с таким способом связи возможны только в том случае, если в качестве второго элемента выступает бром или кремний. На атомарном уровне соединение образуется за счет sp, sp-2 или sp-3 гибридизации. В веществе атомарный металл заменяет собой углерод, что позволяет формировать прочное устойчивое вещество, которое устойчиво к механическим ударам, высоким температурам, химическим веществам. С точки зрения электропроводности вещество является полупроводником (хотя использование карбидов в качестве полупроводниковых элементов невыгодно с практической точки зрения).
  • Металлоподобные материалы. В эту группу входят соединения, у которых металлических элемент является железом, кобальтом, никелем либо относится к переходной группе (IV-VII). У таких карбидных соединений металлические атомы располагаются не на месте атомов углерода, а в различных пустотах кристаллических решеток (поэтому часто такие вещества называют карбидами внедрения). Такое необычное расположение делает вещество устойчивым, крепким, надежным, оно не будет разрушаться под воздействием высоких температур или при воздействии химически активных веществ (кислоты, щелочи, соли и другие).
  • Материалы с ионной связью. В эту группу входит множество карбидов, у которых в качестве металлического элемента выступает алюминий, редкоземельные металлы либо элементы I или II группы периодической таблицы. По химической структуре вещества похожи на соединения с ковалентной решеткой с той лишь разницей, что здесь металлы обычно теряют один или несколько электронов на внешнем уровне, что приводит к образованию веществ-ионов. По химико-физическим свойствам ионные карбиды аналогичны стандартным соединениям — отличная прочность, высокая температура плавления. Единственное крупное отличие — вещества активно взаимодействуют с кислотами (обычно с образованием металла или подобных веществ).

Применение материалов

Карбиды металлов применяются производстве (в основном — в тяжелом). Перечислим основные варианты применения:

  • Простые карбидные соединения на основе железа могут добавлять в металлический сплав (чугун, сталь, чистое железо), чтобы улучшить его физико-химические свойства. Дополнительные компоненты улучшают прочность, повышают химическую инертность, минимизируют риск коррозии под действием воды или атмосферного воздуха. Еще одно полезное свойство — увеличение температуры плавления, что удобно в случае изготовления тугоплавких запчастей или деталей.
  • Карбиды на основе титана или вольфрама отличаются сверхвысокой прочностью, а плавятся они при сверхвысоких температурах. Поэтому из них делают режущие и абразивные инструменты, которые отличаются высоким сроком годности. Подобные соединения можно использовать в качестве огнеупорных материалов (скажем, при производстве печей), для изготовления сварочных стержней.
  • Карбид кальция обладает необычным свойством — при контакте с водой происходит ряд химических реакций, что в конечном счете приводит к образованию ацетилена. Это вещество широко применяется для кислородной сварки, резки или напайки. Поэтому такое карбидное соединение может использоваться для изготовления соответствующих деталей (электроды для сварочных инструментов, напайка и другие). Ацетилен при горении выделяет большое количество тепла, поэтому к работам нужно подойти осторожно.
Читайте также:
Технологии – ремонт акриловой ванны

Основные металлические карбиды

На практике широко применяется множество карбидных соединений. Рассмотрим основные из них.

Карбид гафния

Встречается в виде только одного вещества — HfC. В нормальных условиях обладает кристаллической структурой, окрашено в серый цвет. плавится при температуре 3900 градусов — интересно, что его закипание происходит уже при температуре 4160 градусов. Поэтому к расплавлению нужно подходить аккуратно, чтобы не испарить его. При нагреве до 2000 градусов начинает взаимодействовать с металлами (молибден, вольфрам). Вещество не обладает полной химической инертностью — оно вступает в реакцию с кислотами (в азотной или серной кислоте оно способно полностью раствориться).

Карбиды хрома

Встречается в виде нескольких веществ; основные — Cr23C6, Cr3C2, Cr7C3. Отличаются высокой химической инертностью (хотя могут реагировать с цинком при сильном нагреве). Не вступают в контакт с водой, атмосферным воздухом, кислотами, щелочами, солями, другими карбидными соединениями. Температура плавления не слишком высокое — большинство соединений плавятся уже при температуре 1500-1700 градусов. У соединения Cr7C3 при нагреве до 800 градусов происходит ряд эндотермических реакций и превращений, что приводит к превращению вещества в Cr23C6.

Карбид титана

Встречается в виде одного стабильного соединения — TiC. При нормальных условиях обладает серым цветом с характерным металлическим блеском. Плавится при температуре 3100 градусов, кипит — при 4305 градусах. Обладает высокой устойчивостью, прочностью. Химическая инертность средняя — в нормальном состоянии может вступать в реакцию с кислотами и щелочами (хотя реакция идет слабо). При нагреве до 2500 градусов может вступать в реакцию с азотом (в том числе — атмосферным). При нагреве до 1200 градусов может окисляться и/или вступать в реакцию с углекислым газом.

Карбиды вольфрама

Встречается в виде двух устойчивых соединений — WC и W2C. Оба карбида отличаются приблизительно одинаковыми химико-физическими свойствами. Вид — мелкий порошок серовато-черного цвета (со слабым металлическим блеском или без него). Вещества плавятся при температуре около 2720 градусов, однако при более низких температурах начинается их активных контакт с атмосферным воздухом, азотом или углекислым газом. Соединения легко растворяются в разогретых до температуре кипения серных и азотных кислотах.

Карбид кальция

Основное устойчивое соединение — CaC2. Вид — крупные прозрачные кристаллы, которые могут обладать светло-голубым оттенком. При наличии примесей может окрашиваться в другие цвета — серый, желтый, коричневый, черный и другие (в зависимости от типа примеси и ее концентрации). Соединение плавится при температуре порядка 2500 градусов, однако при комнатной температуре оно активно вступает в реакцию с водой с активным выделением ацетилена. Поэтому вещество нуждается в особых безопасных способах хранения (ацетилен является токсичным для человека).

Карбид циркония

Основное соединение — ZrC. Стандартное состояние — небольшие кристаллы серого цвета, обладающие металлическим блеском. Температура плавления — 3530 градусов, однако при нагреве до 1200 градусов вещество начинает активно вступать в реакцию с атмосферным кислородом, что приводит к образованию оксидов. Вещество слабо реагирует с кислотами, щелочами и солями, однако может вступать в реакцию с атомизированным азотом в составе сложных веществ, что приводит к образованию нитритов. Поэтому вещество нуждается в особых способах хранения.

Заключение

Подведем итоги. Карбиды металлов — соединения, в состав которых входит углерод и какой-либо дополнительный металл. Это может быть железо, хром, цирконий, вольфрам и другие. Соединение может образовывать сложную прочную кристаллическую решетку (ковалентную, металлическую, ионную). Карбиды из-за особенностей своего строения отличаются высокой прочностью, устойчивостью к механической деформации, химической инертностью. Вещества обычно не вступают в реакцию с кислотами, щелочами, солями, атмосферными газами (кислород, азот, углекислый газ).

Из карбидов делают абразивные или шлифовальные инструменты, поскольку они не деформируются, не портятся со временем, могут деформировать другие прочные соединения. Из них делают электроды для сварочных инструментов, термоустойчивые стержни, элементы электрических инструментов. Некоторые виды карбидов могут проявлять необычные свойства. Скажем, карбид золота взрывается при легком контакте, а карбид кальция может вступать в реакцию с водой при комнатной температуре с образованием ацетилена.

Используемая литература и источники:

  • Статья на Википедии
  • Самсонов Г. В., Косолапова Т. Я., Домасевич Л. Т. Свойства, методы получения и области применения тугоплавких карбидов и сплавов на их основе. Киев, 1974
  • Gusev A. I., Rempel A. A. Nanocrystalline Materials. — Cambridge: Cambridge International Science Publishing, 2004.
  • Вальков Ф. А. Неорганическая химия, учебник для педагогических вузов. — М.: Государственное учебно-педагогическое издательство, 1963.

Что такое канифоль: состав, свойства, применение

Каждый, кто во времена Советского Союза имел дело с паяльником, знает о канифоли не понаслышке. Однако сегодня, когда всюду используются паяльные флюсы, канифоль для пайки применяют все реже. А ведь канифоль используется не только для пайки. Давайте же вспомним о том, что вообще такое канифоль, откуда она берется и где еще применяется.

Канифоль или колофонская смола получила свое название от имени древнегреческого города Колофон, где особая сосновая смола высоко ценилась в свое время музыкантами.

Сама канифоль представляет собой достаточно хрупкое аморфное вещество стекловидной структуры, имеющее характерный стеклянный блеск. Цвет канифоли может быть от светло-желтого до темно красного. В качестве составного компонента она содержится в смолах хвойных деревьев и состоит главным образом из карбоновых кислот фенантренового ряда и их изомеров.

Сырьем для производства канифоли изначально служила живица — смолянистое вещество, выделяемое хвойными деревьями при их механическом повреждении. Из живицы выпаривали скипидар и другие летучие вещества, которых в сырой смоле 25%.

При промышленном производстве канифоль получают как экстракт измельченной хвойной древесины с применением органического растворителя либо путем перегонки сырого таллового масла, являющегося отходом циллюлозно-бумажного производства. Таким образом, в зависимости от способа получения, канифоль бывает сосновой, талловой и т. д.

Канифоль нерастворима в воде, однако легко растворима в органических растворителях, таких как этиловый спирт, эфир, ацетон, хлороформ и бензол. Температура плавления канифоли зависит от способа ее получения, и лежит в диапазоне от 50 до 130 °C. В составе канифоли всегда преобладают карбоновые (смоляные) кислоты, главная из которых — абиетиновая, входящая и в состав янтаря.

Канифоль как паяльный флюс

По сей день достаточно широко канифоль используется в качестве паяльного флюса (для удаления тонких пленок окислов с поверхностей спаиваемых металлов) при пайке легкоплавкими припоями и лужении.

Благодаря использованию канифоли при пайке, смачиваемость припоем монтируемых на плату компонентов улучшается. При пайке деталей из меди, медных сплавов, стали, цинка и других цветных металлов кроме алюминия, канифоль пользуется заслуженной популярности в силу эффективности.

В расплавленном состоянии канифоль легко растворяет оксидные пленки: окисленные металлы по сути частично восстанавливаются до металлов, а частично — превращаются в легкоплавкие соли.

При этом канифоль неустойчива к воздействию влаги. Под действием атмосферной влаги она гидролизуется, усиливает коррозию соединений с которыми находится в контакте. Поэтому после пайки канифоль следует смывать (например спиртом или ацетоном). В качестве диэлектрика канифоль используется разве что в очень герметичных устройствах.

Для пайки лучше всего подходит слабый раствор канифоли в изопропиловом или этиловом спирте с добавлением глицерина. Такой раствор весьма эффективен, хоть и имеет лишь слегка желтоватый цвет. Если же он будет слишком концентрированным, то есть если канифоли в растворе окажется слишком много, то смыть ее с платы будет тяжело, да и жало паяльника загрязнится сильнее.

Кстати, для пайки сильно загрязненных или сильно окисленных поверхностей канифольно-спиртово-глицериновые флюсы малоэффективны. В таких случаях рекомендуется применять неорганические, например, кислотные флюсы. Кроме того, глицерин, ввиду гигроскопичности, способствует коррозии проводников и электрическим утечкам по поверхности диэлектрика платы, поэтому остатки флюса с глицерином всегда следует удалять сразу после пайки и особенно тщательно.

Хранение растворов канифоли требует особого подхода чтобы не допустить выпадения кристаллов смоляных кислот. Для этого обязательно профильтрованный раствор не следует хранить в железных банках, поскольку ржавчина на их стенках склонна образовывать со смоляными кислотами резинаты железа, способствующие кристаллизации смоляных кислот. А в растворы с уайт-спиритом нужно добавлять хотя бы 4% скипидара.

Другие применения канифоли

Продукты переработки канифоли используются для проклейки картона и бумаги, она служит эмульгатором при получении искусственного каучука, применяется в производстве пластмасс, резин, мыла, линолеума, искусственной кожи, лаков, красок, электроизоляционных компаундов и мастик.

Канифолью натирают смычки музыкальных инструментов, кончик бильярдного кия, а также обувь балерин для уменьшения скольжения. В тяжелой атлетике, в альпинизме, в бейсболе, при занятиях на турнике, – канифоль позволяет четко зафиксировать хват без скольжения, причем мозолей от этого не появится. Именно измельченную канифоль применяют для имитации дыма в кинематографе.

В былые времена, когда не было эффективных натяжителей, канифолью натирали передаточные ремни различных механизмов. Даже сегодня при запуске механизмов с большой инерцией время от времени прибегают к использованию канифоли.

Добавив порошок канифоли в лак на основе твердых смол, можно повысить его текучесть. Чистая же канифоль в основе лака делает его очень мягким и нестойким, белеющим при попадании влаги, легко стираемым. Качественные лаки на основе канифоли получают этерификацией (сплавлением) 6% глицерина с канифолью.

Кстати, один из эфиров канифоли зарегистрирован как пищевая добавка Е915 — пентадиновая смола. Но практически в качестве пищевой добавки Е915 не применяется ни в России, ни в странах Евросоюза.

Что такое канифоль и для чего она нужна

Если выходит из строя электроприбор, любое устройство, необходимое в быту или работе, причиной поломки может стать неработающая микросхема, или полетевший чип на материнской плате, возможно, требуется присоединить диоды к площадке и так далее. Все эти и другие сходные с ними проблемы можно легко устранить в домашних условиях с помощью специальных инструментов и материалов, обладая определёнными умениями и навыками.

  • Что такое канифоль
    • Способы получения
    • Свойства
    • Где ещё может быть применена смола?
  • Пайка в домашних условиях
  • Способы пайки
  • Преимущества использования канифоли
  • Недостатки

Мастеру, разбирающемуся в хитроумном устройстве микросхем, проводов и прочих деталей её составляющих, не составит большого труда быстро устранить поломку. Часто проблемы можно решить при помощи спайки отошедшего элемента. Один из материалов, который потребуется для пайки, это канифоль.

Что такое канифоль

Канифоль (полное название — колофонская смола) — очищенная особым образом смола хвойных деревьев. Канифоль — аморфное хрупкое вещество, состоящее из стекловидных кусков, внешним видом напоминающих знакомый каждому природный янтарь.

Способы получения

В промышленном производстве колофонскую смолу получают несколькими способами.

  1. Из живицы. В основном для получения канифоли используется метод термической обработки сока хвойных пород древесины — живицы. После того как из неё будут выпарены такие вещества, как вода и скипидар, образуются полупрозрачные твёрдые куски канифоли, которые в дальнейшем будут подвергнуты дальнейшей химической очистке.
  2. Методом экстракции. При этом методе колофонскую смолу добывают из измельчённой особым образом древесины с помощью растворителей.
  3. Методом перегонки таллового масла. Такое сырое масло является отходом, получающимся при изготовлении целлюлозно-бумажной продукции.

О том, каким способом и из какого сырья была получена канифоль, можно узнать из её названия: сосновая (гарпиус), таловая, экстракционная и так далее.

Свойства

Кроме того, что колофонская смола является прекрасным природным диэлектриком, известны другие особенности:

  1. Она хорошо растворяется при помощи таких органических растворителей, как бензин и хлороформ, эфир, спирт и ацетон. Но, канифоль нельзя растворить при помощи обыкновенной воды.
  2. Температура плавления этого твёрдого вещества напрямую зависит от того, из какого источника и каким именно способом оно было получено. В основном она колеблется в пределах температур от 50 до 70 градусов, в некоторых случаях граница температурного режима может достигать и 130 градусов по Цельсию.
  3. В составе образующего вещества канифоли содержится огромное количество смоляных кислот (до 90%), основной из которых является абиетиновая кислота.
  4. Смола легко разрушается при механическом воздействии.

Цвет смолы может варьироваться в вариантах от светло-жёлтого до темно-бурого оттенка. Насыщенный оттенок этого природного вещества указывает на то, что очистка смолы была проведена не совсем правильным образом и в ней содержится большое количество примесей, ухудшающих её качества, влияющих на её свойства. Чем темнее цвет вещества, тем ниже электроизоляционные свойства канифоли. Правильно обработанный материал имеет приятный лимонный оттенок и является прекрасным природным изолятором.

Где ещё может быть применена смола?

Такая смола используется не только в качестве флюса при пайке. Применяют её и для многих других целей:

  • при производстве разных лаков и красок;
  • как один из материалов, использующийся при изготовлении пластмасс;
  • при обработке струн и смычков для музыкальных инструментов;
  • для натирания подошв балетной обуви;
  • для создания эффекта дымовой завесы и других эффектов в киноиндустрии.

Пайка в домашних условиях

Пайка — специальная техника, с помощью которой металлические элементы прочно сцепляются между собой посредством расплавленного припоя. В быту скрепить детали между собой можно при помощи обыкновенного паяльника.

Перед тем как приступить к пайке, необходимо зачистить поверхности деталей, которые будут сцепляться между собой, при помощи напильника или наждачной бумаги. Затем их необходимо обезжирить при помощи растворителя или очистить, используя бензин, и смазать флюсом.

Флюс — вещество, с помощью которого с поверхности металла удаляются оксидные плёнки, другие загрязнения и излишний жир. Кроме того, флюс предохраняет металлы от возможного окисления. В качестве такого флюса часто используется особое вещество — канифоль.

В основном флюс из канифоли используется для пайки в домашних условиях. При проведении производственной пайки смола используется в меньших количествах, по сравнению с флюсами из других веществ.

Благодаря свойству канифоли растворять при нагреве оксиды олова, а также меди и свинца, это вещество может быть использовано в электротехнических работах как особый природный флюс — компонент, обладающий противоокислительными свойствами. Благодаря такой характерной особенности, это вещество способно очищать поверхности металла при проведении пайки. С его помощью также улучшается растекание и практически нивелируется поверхностное натяжение вещества, используемого в качестве припоя.

Для того, чтобы была обеспечена высокая технологичность процесса применения флюса при пайке выпускается несколько типов таких компонентов, выполненных на основе колофонской смолы (они могут быть твёрдыми, жидкими и гелеобразными):

  1. Твёрдый флюс. Такой тип компонента для спайки и лужения деталей используется уже довольно долгое время и является самым популярным. Он имеет как свои очевидные достоинства, так и недостатки. К последним можно отнести то, что используя твёрдый флюс трудно соблюдать точность при нанесении его в труднодоступные места спайки.
  2. Флюс на основе спиртового раствора. Такой компонент является универсальным. Его можно использовать при спаивании как мелких, так и крупных деталей. Основным преимуществом такого метода является лёгкий способ его нанесения при помощи кисточки.
  3. Флюс из канифоли на основе геля. Вязкая консистенция геля позволяет быстро наносить вещество на поверхность. С помощью геля легче обрабатывать самые труднодоступные места поверхности деталей, которые будут подвергаться спайке. При этом обеспечивается максимально точное дозирование вещества флюса. Гель не высыхает слишком быстро, по сравнению со спиртовыми флюсами и более податлив, чем твёрдый флюс из канифоли.

Способы пайки

Изучив свойства и характеристики колофонской смолы и флюсов, выполняемых на её основе, можно приступить к процессу пайки. Как он происходит?

Процесс пайки с использованием канифоли происходит несколькими способами.

Первый способ.

  1. Нагревают паяльник до необходимой температуры.
  2. На жале паяльника размещают немного легкоплавкого вещества, используемого в качестве припоя. Это может быть — олово, свинец, медь, сурьма, висмут, цинк, кадмий.
  3. Опускают жало паяльника вместе с выбранным припоем в канифоль, чтобы набрать смоляное вещество. При этом нужно учесть что, при полном нагреве паяльника должен появиться лёгкий дымок.
  4. Как можно быстрее — до испарения смолы — производят спайку необходимых деталей.

Описанный выше способ требует быстроты действий, внимания и высокой точности. Чтобы выполнить его, нужно обладать определёнными умениями и навыками. Поэтому можно произвести спайку с использование канифоли и другим методом.

  1. Используют самый обыкновенный этиловый спирт в качестве основы для флюса.
  2. В спиртовой раствор добавляют порошок из канифоли. Взвесь хорошо перемешивают и оставляют до тех пор, пока канифоль полностью раствориться.
  3. Спиртовой раствор колофонской смолы наносят с помощью кисточки на детали, которые будут соединять с помощью пайки.
  4. Паяльник опускают в припой и вынимают, только когда жало паяльника будет полностью покрыто блестящей плёнкой.
  5. Захватывают ещё немного расплавленного припоя и быстро переносят к местам будущей спайки.
  6. Равномерно распределяют припой по всей поверхности — заслуживают места будущей спайки.
  7. Таким же способом переносят необходимую массу припоя, требующуюся для прочного сцепления в местах спая.
  8. После того как места спая остынут, их протирают с помощью влажной мягкой ткани и дают подсохнуть.
  9. Обрабатывают получившийся спай при помощи напильника. Вместо него можно использовать мелкозернистую наждачную бумагу.
  10. Протирают поверхность сухой тряпкой.

С помощь указанных методов производится пайка деталей с использование канифоли.

Преимущества использования канифоли

К явным плюсам использования этого вещества при пайке можно отнести следующее.

  1. Канифоль является диэлектриком и обладает прекрасными изоляционными свойствами.
  2. Её можно легко приобрести. Канифоль — доступный материал, продающийся в любом магазине, имеющем хозяйственный отдел.
  3. Бюджетная цена по сравнению с другими материалами, использующимися в качестве флюса при пайке.
  4. Возможность осуществлять пайку при её помощи даже при низкой температуре воздуха.
  5. Её можно использовать и при работе в домашней мастерской, и в промышленных масштабах.
  6. Канифоль не подвергается воздействию влаги, так как она не растворяется в воде.
  7. Обладает относительно большим сроком хранения.
  8. Обезжиривает детали и убирает с них оксидные плёнки.
  9. Канифоль может быть использована без дополнительной защиты.
  10. Этот материал не токсичен и может быть использован без применения средств дополнительной защиты.

Недостатки

К минусам при использовании канифоли можно отнести:

  1. Довольно низкую активность вещества. Благодаря этому свойству спайка с её использование может не получиться сразу. Процесс использования канифоли требует определённых навыков и опыта. В дальнейшем обработку деталей с её помощью можно осуществлять намного быстрее.
  2. Флюс на основе этого вещества способен не выделять пар при спаивании. Такая гигроскопичность может вызвать коррозию обрабатываемого при пайке металла.
  3. Канифоль используют при обработке небольших деталей из простых металлов. Для обработки крупных частей и нержавейки используются флюсы из других материалов.
  4. Канифоль — довольно хрупкий, легко крошащийся материал, который может быть разрушен при определённых механических нагрузках. Такое свойство этого вещества нужно обязательно учитывать при осуществлении перевозки. Канифоль нужно особенно тщательно упаковывать при транспортировке.

В качестве заключения, можно отметить, что пайка современных деталей, особенно элементов микросхем, различных чипов, и других компонентов, используемых в радио и электротехнике достаточно непростой процесс, требующих определённых навыков, особенно быстроты реакции, внимательности и точности.

Для проведения паяльных работ используются различные материалы, среди которых, канифоль отличают особые свойства. Благодаря этим качествам при правильном применении это вещество не вступает в реакцию с металлами сцепляемых при пайке элементов и материалами припоя.

Из-за наличия нескольких разновидностей и благодаря удобным формам, в которых она выпускается, канифоль остаётся одним из самых популярных флюсов, используемых при спаивании деталей в электротехнике.

Что такое канифоль и для чего нужна при пайке

Популярным расходным материалом при паечном ремонте электрооборудования, сварочных аппаратов считается гостированная канифоль для пайки. Вещество органической природы не растворяется в воде, плавится при нагреве. Температура размягчения канифоли в пределах +50…70°C.

Очень хрупкая полупрозрачная субстанция получается различными способами, цветность зависит от способа производства, бывает с ярким светло-желтым оттенком, коричневатым разной насыщенности и темно-красным. Узнается по стекловидному блеску, при разломе крошится с образованием раковин, неровностей.

Впервые смесь природных карбоновых кислот с изомерами научились получать в Древней Греции. В городе Колофон музыканты натирали ей смычки для улучшения звучания струнных инструментов. Впоследствии «колофолонской смоле» нашлось другое применение, ее применяют при производстве лакокрасочных материалов и некоторых видов пластиков, киношных и тепловых «дымовушек».

Что это такое?

Канифоль это природная смола, получаемая при термической обработке древесного сока хвойных пород. После фракционного отделения воды и скипидара образуется густая смесь, которая при высыхании превращается в комок неровной формы. Химический состав канифоли зависит от исходного сырья и степени очистки. В органическую смесь входят смоляные кислоты, эфирные масла и примеси. Чем больше примесей, которые ухудшают электроизоляционные свойства, тем темнее окраска.

Качество материала регламентируется ГОСТ 19113-84, по чистоте классифицируется по сортам. Высший, первый и второй. Два последних желтой окраски применяются в электротехнике. При выборе флюса важна температура плавления канифоли, у некоторых видов она достигает + 130°С. Плотность вещества в пределах от 1,07 до 1,10 г/см3, в основном его делают из сосновой живицы. Разработана технология экстракции древесной муки и обработки отходов производства бумаги. Способ выработки во многом определяет технологические свойства, по стандарту он указывается на упаковке паяльного флюса.

Зачем нужна?

Основные причины выхода из строя бытовой электротехники, приводного оборудования и инструментов – нерабочие платы, сгоревшие конденсаторы и другие элементы, требующие замены, монтаж которых производится методом пайки. Имея определенные навыки работы с паяльником, каждый умелец сможет отремонтировать электрооборудование самостоятельно.

При расплавлении металла происходит окисление. Цветные металлы намного активнее вступают в реакцию с кислородом в горячем виде, образуются оксиды, ухудшающие соединение. Для устранения оксидной пленки при пайке применяются флюсы, они наносятся на поверхности спаиваемых деталей, необходимы для защиты от воздействия компонентов воздуха, снижают поверхностное натяжение припоя при покрытии деталей.

Для чего, по сути, нужна канифоль при пайке? Только в качестве флюса. Экологичное вещество характеризуется рядом достоинств:

  • не образует вредных испарений при нагреве;
  • не ухудшает электропроводимость спайки;
  • улучшает прочность соединений;
  • препятствует растеканию жидкотекучих металлов;
  • применяется при соединении легкоплавких контактов.

Смолистый материал при длительном хранении не меняет своих свойств, не окисляется и не разлагается.

Это самый известный флюс, который для домашней пайки несложно найти в специализированных магазинах.

Среди недостатков канифоли следует отметить плохое удержание расплава на поверхности металла. Для полноценной защиты деталей и элементов схемы требуется наносить смолу несколько раз. В условиях повышенной влажности даже после затвердевания канифольная пленка способна впитывать влагу, это приводит к развитию коррозионных процессов. Хрупкое вещество важно правильно хранить и транспортировать, чтобы сохранить целостность комка. Важно учесть, что смолистый флюс применяется не для всех паечных соединений.

Какие виды существуют

Разновидности канифольных флюсов по способу производству, составу исходного сырья:

  • Живичная канифоль чаще производится из сосновой смолы, реже – из других пород хвойных деревьев. Сырье собирают, подсекая кору живых деревьев. Название флюса появилось по аналогии с исходным продуктом. В сосновой живице содержится до 80% канифоли и 20% скипидара. Живичная канифоль качественная, содержит от 90 до 94 % смоляных кислот, до 1,5 % жирных. Концентрация неомыляемых веществ не более 6…7%. Встречается живичная канифоль редко. Ее часто заменяют экстракционными и талловыми аналогами.
  • Экстракционная канифольная смесь производится методом экстрагирования смеси измельченной хвойной древесины (обмола) и бензина, выполняющего функцию растворителя органических кислот. От живичной такая канифоль отличается темным оттенком и температурой размягчения, она ниже на 10–15 градусов, составляет в среднем +55°С. Кислотное число экстракционного паечного флюса в пределах 150 мг КОН/г, массовая доля жирных кислот не выше 12%. Для улучшения эксплуатационных свойств экстракционную канифоль очищают. Процедура называется оставлением. Адсорберы поглощают красящие компоненты. На выходе получается продукт, близкий к живичному по химическому составу и свойствам.
  • Талловая паечная канифоль самая светлая. Выпускается из сульфатного мыла путем вакуумной перегонки. Получается смолистое вещество с высокой концентрацией абиетиновой кислоты, ускоряющей кристаллизацию. Исходным сырьем служат отходы целлюлозно-бумажного производства. По техническим характеристикам таловая канифоль сопоставима с живичной.

Несколько слов об особенностях различных видов канифольных флюсов. В живичном тугоплавком практически нет жирных кислот, которые недопустимы при пайке некоторых металлов. В экстракционной их может содержаться до 10%, в таловой еще больше. В розничной торговле флюс продается фасованным видом в металлических круглых коробках. На этикетке указываются технические особенности.

Как пользоваться канифолью

При пайке деталей, контактов рекомендуется учитывать несколько моментов:

  • Горячая канифоль способна растворять оксидные пленки. Это свойство актуально при паечном соединении загрязненных поверхностей.
  • При выборе температурного режима в расчет принимается температура расплавления, а не расплавления смолы. Рекомендует прогревать флюс и детали до +100…130°С. На холодной поверхности канифоль и припой быстро остывают.
  • Применение смолистых флюсов новичками часто заканчивается образованием сажи на жале паяльника. Важно поддерживать температуру нагрева, не допускать повышенного образования дыма, не превращать канифоль в темно-бурую вязкую массу.

Перед началом работы обгораемое жало лучше предварительно очистить, чтоб снизить риск попадания окалины в шов. Необгораемое достаточно опустить в канифоль, чтобы образовалась пленка. Важно уделять внимание подготовке поверхностей, их очищают от пыли и влаги. Необходимо позаботиться о жесткой фиксации соединяемых элементов. Место спайки после остывания обязательно очищают от остатков флюса.

Использование припоя с канифолью

Производители предлагают оловянно-свинцовые припои, в состав которых входит канифольная смола. Он реализуется прутками, намотанными на катушки. Фактически это тонкие оловянно-свинцовые трубки, полости которых залиты расплавленной канифолью. Это одновременно флюс и присадочный материал, образующий соединение при лужении. Преимущества припоя с канифолью:

  • увеличение скорости пайки;
  • упрощение паечного процесса.

В процессе пайки важно поддерживать определенный температурный режим. При перегреве появляется канифольный дым, усиливается выделение паров олова и свинца. Не следует пренебрегать техникой безопасности. При попадании горячего флюса и припоя на кожу его необходимо удалять, нужно сразу стряхивать частички расплава с одежды.

Проводит ли канифоль ток?

При пайке микросхем, особенно когда расстояние между дорожками небольшое, необходимо удалять остатки флюсовой смолы. Если этого не сделать, может произойти пробой при подключении электропитания. Для удаления остатков используют растворители, ацетон.

Законный вопрос: как проходит электричество, если канифольный состав – полярный диэлектрик? Действительно, проводимость паяльной канифоли настолько мала, что ей можно пренебречь. Но в смоле остаются микрочастицы припоя, возникающие при отрыве жала паяльника. Даже незначительные вкрапления, которые сложно разглядеть, способны вызвать замыкание соседних дорожек.

Еще одна причина – способность расплавленной канифоли для пайки впитывать атмосферные пары в условиях повышенной влажности. При образовании мелких пузырьков высокочастное оборудование выходит из строя. При самостоятельном ремонте инверторов следует это учитывать.

Готовая плата должна быть идеально чистой, чтобы избежать возможной коррозии и для контроля соединений, выявления возможных дефектов.

При смывании остатков канифоли чистым спиртом возможно образование белых разводов на плате. Специалисты предпочитают пользоваться сложными составами, например, смесью 1 части спирта и 1 части бензина с добавлением незначительного количества ацетона для лучшего смешивания компонентов.

При соблюдении всех рекомендаций, правильном выборе разновидности канифольного флюса получаются надежные паечные соединения. Приобретая канифоль, важно учитывать химический состав соединяемых сплавов. Универсальный расходный материал – припой с канифолью. Им удобно пользоваться при большом объеме работы.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: