Что такое рекуператор воздуха и как сделать его своими руками

Самодельный рекуператор для загородного дома с КПД 80%

Наступила зима, и я решил усовершенствовать систему вентиляции в моем загородном доме. До этого момента ее практически не было, все вентилирование осуществлялось за счет открывания окон, выбрасывания теплого отработанного воздуха и впускания холодного свежего с улицы. Я что-то слышал о системах рекуперации (recuperatio — обратное получение, возвращение), позволяющих не просто выбрасывать тепло вместе с воздухом, а использовать его для нагревания входящего свежего воздуха с заметной экономией энергии на отоплении. Подумав — а почему бы и нет, я решил попробовать сделать такую систему самостоятельно.

Теоретическая часть очень проста.

Рекуператор — это ящик со слоями фольги или чего то подобного, находящимися на небольшом расстоянии друг от друга. По четным промежуткам между слоями из дома выходит теплый отработанный воздух, по нечетным заходит с улицы свежий холодный. Потоки идут навстречу друг другу, при этом теплый отработанный воздух из дома, проходя по промежуткам между фольгой, соприкасаясь через фольгу с холодным воздухом с улицы, постепенно отдает ему свое тепло и выходя из рекуператора остывает почти до температуры входящего. Входящий с улицы воздух, в свою очередь, поглотив тепло выходящего из дома воздуха, нагревается почти до температуры воздуха в помещении.

Расчетная экономия на отоплении входящего с улицы воздуха ожидалась в районе 1-2 квт, при объеме циркуляции через вентиляцию с рекуператором около 100-150м3/час, что делало проект теоретически рентабельным и окупаемым.

Подумав и порисовав

я приступил к закупкам материалов и изготовлению устройства.

Для создания слоев я использовал фольгу для утепления парилки в бане толщиной 50 мкм, для проставок между слоями — трехмиллиметровый линолеум, разрезанный на полоски шириной 10-15мм. Для склеивания и герметизации — обычный хороший силиконовый герметик под пистолет, для звуко- и гидроизоляции внутри рекуператора — пластиковые сэндвич панели, для внешней стенки ящика — фанеру 12мм, а в качестве вентиляторов — обычные канальные вентиляторы диаметром 125мм производительностью до 188м3/ч.

Процесс изготовления состоял из двух основных этапов — изготовления ящика с внутренним слоем из пластиковой сэндвич панели

и приклеивания слоев фольги с проставками на силиконовый герметик. На одно только приклеивание слоев фольги с их вырезанием ушло дня четыре, не меньше.

Слоев вышло 43 штуки, общая площадь фольги в рекуператоре около 17 м2.

Дальше идет монтаж ящика на стену в топочной и подключение его к системе вентиляции.

Запуск, измерение температур воздуха в помещении, на улице, на выходе из рекуператора в дом и на выходе рекуператора на улицу, а также дальнейший расчет КПД по формуле КПД=(t[рек]-t[внешн])/(t[внутр]-t[внешн]) показали очень неплохой КПД — около 80%, притом что для коммерческих рекуператоров нормальным является КПД в районе 65-80%.

В чем секрет? В огромной площади теплообмена и удачной конструкции. 17м2 фольги против 4-5м2 у магазинных рекуператоров. Призматическая форма теплообменника вместо 2-3 квадратных теплообменников позволяет более эффективно использовать площадь и объем внутри рекуператора. Расчеты тепловой “мощности” рекуператора показали около полутора киловатт экономии энергии на обогрев воздуха.

Для чего нужен рекуператор воздуха и как он работает?

Независимо от назначения помещения система отвода используемого воздуха присутствует сегодня во всех из них. Но у вентиляции есть один серьезный минус – с отработанным воздухом на улицу улетучивается и тепло. Зимой это особенно важно, потому что теплопотери приводят к перерасходу топлива, используемого для системы отопления. Поэтому сегодня все чаще устанавливают рекуператоры для частного дома.

Что такое рекуператор, и как он работает

Принцип работы вентиляционной системы – создание воздушного потока, который проходит по всему помещению от нижней точки (ближе к полу) к верхней (ближе к потолку). Обе точки располагают на противоположных стенах, чтобы эффективность работы вентиляции была высокой. Из нижней точки свежий воздух поступает внутрь комнат, из верхней отработанный удаляется наружу.

Сделать рекуператор для частного дома своими руками несложно. Главное – надо понять, как он работает. Во-первых, сразу следует обозначить, что слово “рекуператор” не русское, а латинское. И переводится оно – возвращение чего-либо.

Рекуператор для системы вентиляции частного дома – это устройство, в котором выходящий воздух отдает свое тепло воздушному потоку, входящему в помещение. То есть внутрь уже попадает не холодная масса, а нагретая.

Рекуператор – это не часть воздушного отопления, это элемент вентиляции (не самый дорогой). И рассчитывать, что он поможет обогреть частный дом, не стоит.

Читайте также:
Эффективные элементы конструкций или как сэкономить при постройке изящного дома

Экономическая выгода от его работы зависит от четырех факторов:

  • деньги, которые были затрачены на монтаж;
  • деньги, потраченные на обслуживание;
  • время эксплуатации системы;
  • тип топлива, используемый для отопления частного дома.

Виды рекуператоров для частного дома

Эти устройства надо классифицировать по двум группам:

  1. По типу движения воздушных масс.
  2. По конструктивному исполнению.

В первую группу входят две подгруппы, где воздух с улицы и на улицу движется или в одном направлении, или в противоположных. Они так и называются – прямоток или противоток.

Вторая группа более многочисленна, потому что предлагаемых конструктивных решений немало. Самый простой – это труба в трубе, как в коаксиальном дымоходе. Сделать его для частного дома своими руками легко, для чего понадобятся две трубы из оцинкованной стали.

Иногда берут только одну из оцинковки, она должна быть малым диаметром и устанавливаться внутри большой. Вторая может быть из пластика. Оцинковку можно заменить гофрой из алюминия, так будет дешевле.

Принцип работы такого рекуператора для частного дома заключается в следующем:

  • теплый отработанный воздух из помещения частного дома проходит внутри гофры;
  • с улицы свежий воздух движется в межтрубном пространстве.

Труба с малым диаметром делается из стали или алюминия (гофра), потому что металл – хороший теплопроводник. То есть эффективность передачи тепловой энергии выше.

У всех рекуператоров есть один важный момент – чем больше плоскость соприкосновения двух воздушных потоков, тем лучше. Поэтому добиться максимального коэффициента полезного действия этой конструкции сложно.

Единственный выход – увеличить длину труб, что не всегда возможно в условиях частного дома. Можно было бы сформировать конструкцию в виде змейки, уменьшив размеры устройства, но чисто технологически это также невозможно.

Хотя для небольших частных домов такой прямолинейный рекуператор – неплохое решение, которое можно изготовить своими руками.

Как сделать своими руками коаксиальный рекуператор

Для этого понадобится:

  • канализационная труба из пластика диаметром 160 мм;
  • гофра диаметром 100 мм;
  • два пластиковых тройника под 45° диаметром 160 мм;
  • два трубных пластиковых переходника с диаметра 160 на диаметр 100 мм.

Сборка конструкции проходит по следующей схеме:

  1. В канализационную трубу во всю длину вставляют гофру. Концы последней должны быть выведены наружу.
  2. Один конец вставляется в тройник так, чтобы он вышел из отвода, расположенного под углом 45°.
  3. Тройник крепят к пластиковой канализационной трубе.
  4. То же самое проводят с другим тройником.
  5. На тройники насаживаются переходники.
  6. Через патрубки в 100 мм вытаскиваются концы гофры. Именно в этом месте проводится герметизация между пластиком и алюминием, для чего лучше использовать силиконовый герметик, который наносится шириной 2-3 см.
  7. Выступающие концы гофры обрезаются заподлицо с патрубком переходника.

Теперь остается включить рекуператор, изготовленный своими руками, в систему вентиляции частного дома. К гофре подсоединяется воздуховод от участка, по которому из помещения выводится теплый воздух. К пластиковой трубе диаметром 160 мм – воздуховод, по которому в дом вводится чистый с улицы. Здесь также можно установить переходники, чтобы не усложнять соединение.

Необходимо обратить внимание на тот факт, что эта конструкция является универсальной. То есть она может использоваться и как прямоток, и как противоток.

Для увеличения КПД рекомендуется использовать не менее четырех таких конструкций длиной по 2 м, соединенных параллельно друг с другом. Чем больше рекуператоров этого типа, тем лучше.

При этом внешнюю плоскость устройства надо обязательно теплоизолировать. Так можно решить проблему появления конденсата, который образуется в межтрубном пространстве.

Предлагается приблизительно похожая конструкция, где вместо внешней трубы используется герметичный короб. То есть сформированная змейкой или спиралью труба, она же гофра, укладывается внутрь короба, утепленного с внешней стороны. В коробе сделано четыре отверстия под патрубки:

  • в один из них будет поступать уличный холодный воздух, через второй – уже нагретый, идущий в частный дом;
  • в третий и четвертый будут вставлены концы гофры.

Короб можно изготовить из поликарбоната. Его части крепятся с помощью клеевого состава, обязательно применяется герметик. Материал удобен тем, что с ним просто работать. Стоит он недорого.

Размеры короба выбираются с учетом того, какого эффекта нужно добиться. Чем он больше, тем лучше. В нем поместится больше трубы, а значит, плоскость соприкосновения двух воздушных сред будет больше. Лучше собрать длинный рекуператор, чем широкий. В частном доме его удобно располагать на чердаке.

Читайте также:
Чем резать пластиковый плинтус?

Короб также надо утеплить. Но можно использовать конструкцию 2 в 1. То есть вместо поликарбоната нужно сразу применить теплоизоляционные плиты из пенополистирола толщиной 20-30 мм. Сборка проводится по той же технологии с теми же материалами и приспособлениями.

Коаксиальный рекуператор из трубы и гофры

Как сделать пластинчатый рекуператор для частного дома своими руками

Еще одна модель несложного рекуператора для частных домов, который делают своими руками. Он называется пластинчатый. Собирается на основе короба и большого количества пластин. Последние – это толстая фольга 0,5 мм.

Из пластин делают перегородки, между которыми перемещаются холодный и теплый воздух. Камеры располагаются попеременно. То есть в одной движется холодный воздушный поток, во второй теплый, в третьей холодный и так далее. Поочередное расположение повышает эффективность теплоотдачи. К тому же рекуператор собирают из большого количества камер. Чем их больше, тем КПД прибора выше.

Единственное требование – расстояние между пластинами. Оно не должно быть больше 3 мм и меньше 1 мм. Такое строгое требование основано на правильной работе рекуператора. Если уменьшить расстояние, то скорость воздушного потока увеличивается, за счет этого снижается коэффициент теплоотдачи.

Оптимальная скорость – 1 м/с. Увеличив промежуток, создают условия появления большого количества конденсата, который забивает каналы.

Есть упрощенная модификация такого вида рекуператора для частного дома. Для этого потребуются листы оцинкованной стали толщиной 0,5 мм.

  1. Их разрезают на квадраты 20х20 см. И делают из них штабели.
  2. Между кусками оцинковки прокладывают полоски твердого материала. Подойдет техническая пробка толщиной 2-3 мм.
  3. Торцы штабелей промазывают герметиком с каждой стороны. То есть с одного торца и противоположного закрывается одна камера, с соседнего и его противоположного другая. И так по очереди.
  4. Этот штабель укладывается в предварительно приготовленный короб, который разделен на отсеки, как показано на фото ниже. Чем больше штабелей, тем лучше.
  5. В днище и крышке короба, можно в торцах, делаются отверстия, куда вставляются патрубки.
  6. Рекуператор готов, можно подсоединять к вентиляционной системе частного дома.

Вариантов конструкций рекуператоров, которые можно сделать своими руками, несколько. Какой выбрать, каждый решает сам. Самый простой – коаксиальный. Пластинчатый сложнее и в конструкции, и в плане сборки устройства. Особое внимание уделяют размерам пластин, их форме, а также расстоянию между ними.

Если что-то непонятно, то вопросы ждем в комментариях. Если статья понравилась, сделайте ее репост в соцсетях, сохраните ссылку в закладках.

Также рекомендуем посмотреть подобранные видео по нашей теме.

Рекуператор своими руками в 30 раз дешевле заводского.

Рекуператор своими руками — улучшенная версия.

  • https://admin.yaradom.ru/articles/168-effektivnyj-rekuperator-vozdukha-svoimi-rukami
  • https://www.forumhouse.ru/journal/articles/5808-effektivnyi-rekuperator-vozduha-svoimi-rukami

Евгений Афанасьев главный редактор

Автор публикации 07.05.2021

Понравилась статья?
Сохраните, чтобы не потерять!

Рекуператор своими руками

Рынок рекуператоров переполнен. Объединяет их одно — не гуманная цена. Есть недорогие рекуператоры (бризеры всякие), но они вызывают сомнения в плане эффективности.

Если 100-200 тысяч для вас критичные, то можно собрать рекуператор самостоятельно. В противном случае лучше купить готовый.

Мой опыт

Когда я жил в квартире в городе у нас был рекуператор. Это была украинская Прана. Поставили её потому, что дорога была рядом и проветривать было тяжко из-за шума.

С тех пор я знаю, что рекуператор – это вещь. Всегда свежий воздух, отсутствие проблем с влажностью. Всегда свежая голова, отличный сон.

Из минусов: такой рекуператор работал на небольшую площадь — 40 м2 это потолок. И шум, к которому привыкаешь, но всё же.

Кстати, есть модель Праны и для загородных домов. Она больше. И забор воздуха осуществляется по отдельному рукаву из противоположной части дома.

Самодельный вариант номер 1

На мой взгляд это одно из лучших решений.

Из комментариев к ролику:

Рекуператор шикарный!
КПД отличный. Общая площадь теплообмена 2 м2 получилась. Грамотно сделан слив конденсата. Легко очищать промывкой. Ржаветь нечему. Бюджет копеечный. И думаю, благодаря тому, что теплопроводность пластика ниже стали, точка росы распределена на большую длину и выпадающий конденсат будет более распределено по длине зимой замерзать. Воздушному потоку легче будет сдувать иней. Одни плюсы..
Зимой будет замерзать, железобетонно. Это не к рекуператору вопрос, это физика.. У самого 2 таких. Что бы решить проблему замерзания необходимо сделать забор воздуха через грунт. Что бы точку росы сместить в грунтовый канал трубы. Либо просто выключать на время приточный вентилятор, прогревая рекуператор. Или радикально, феном бахнуть мин на 5. но это все костыли. Инеем быстро обрастает. Есть правда процессы, которые сдувают кристаллы инея, но они только в теории. на практике нифига не работают, может потому, что металл. Только грунт решит проблему, или догрев входящего. Точку надо выносить.

Вам формула площади круга S=πR² в помощь. Так вот надо поделить площадь трубы 160 диаметра на сумму площадей всех ваших 40ка трубок. И эта цифра должна в идеале быть равной 2. Вентиляторы обязательно должны быть на подачу и обратку и обязательно одинакового расхода по кубатуре. И каждый за час должен перекачивать объем равный объему всего вашего дома. И вход и выход рекуператора как в доме так и на улице надо разнести максимально далеко друг от друга. В доме вообще желательно в разные углы по диагонали. Иначе вся затея почти будет зря.
так я на это вас и хотел натолкнуть, чисто на глаз у вас переизбыток трубок, их должно быть меньше

Всё хорошо, но вставлю и свои 5 копеек. Основное сопротивление в Вашем варианте на фильтрах, и оно будет увеличиваться, особенно на вытяжном фильтре. Нужны фильтры большей площади, мешочного типа, они дают меньшее сопротивление и обслуживаются реже. Главное что вывел- надо наружные на улице повороты на 90 градусов заменить на плавные 2*45)).

2. Вариант маштабнее

3. Вариант с синхронным переключением

Плюсы и минусы этого решения:

  1. Нет конденсата
  2. Нет канала от теплообменника в другой угол квартиры. Это большой плюс. Под потолком не надо вести воздуховод.
Читайте также:
Стол из массива сосны: белые овальные модели под старину

Как идея: Вентиляторы на 220 с приёмником китайским (замок для авто). Блок центральный имеет пульт от автозамка и просто подаёт сигнал, а вентиляторы по всему дому принимают его и переключаются. Без трансформаторов.

Слабые места

  1. Нет ясности по характеристикам: градусам, теплоёмкости и кубометрам. Возможно при увеличении воздухообмена показатели не будут настолько красивые.
  2. Электроника, хоть простая, но всё же это усложнение
  3. Есть опасения, что зимой лёд может нарушить работу устройства. В Пране этот вопрос был решён просто: небольшой наклон в сторону улицы + подогрев входящего воздуха мощностью 60Вт. Этот подогрев по инструкции должен работать при за бортом ниже нуля. И всё равно один раз он наморозил льда и струйка конденсата пошла по стене внутри квартиры.

4. Простой и эффективный

Просто сборник чудо-решений — простых и эффективных:

  • Использование саморегулирующегося кабеля
  • Нужные детали автор напечатал на 3Д-принтере. Для меня было открытием — на местной интернет-барахолке нашлись три частника, которые оказывают такие услуги
  • Корпус собирается из прямоугольных воздуховодов и выглядит совсем не кустарно

Вот описание этого рекуператора:

Вариант 5. Труба в трубе, но более компактный

Пока никаких тестов автор не сделал. Только собрал ящик с трубами без вентилятора:

Я предполагаю, что ключевой вопрос будет с отводом конденсата, который будет образовываться в 1-2-3х полостях.

Однако идея гениальная своей копеечной стоимостью, простотой обслуживания и замены его частей. Ведь накопление пыли и бактерий нужно будет периодически убирать. Это можно делать просто заменой гофры.

Выводы

Самодельный рекуператор может быть весьма эффективным. Надо обязательно попробовать сделать подобную штуку. Она однозначно улучшит качество жизни и сэкономит деньги на отопление.

Рекуператор воздуха своими руками

Главным современным трендом в строительстве выступает энергоэффективность. Стремление сохранить невосполнимые природные ресурсы и рационально использовать энергоносители привело к тому, что в развитых странах активно строят дома с очень низким уровнем потребления энергии, нулевым потреблением и даже такие. Которые пассивно производят энергии больше, чем используют. Такие показатели достигаются разными методами и технологиями от солнечных батарей и утепления стен до повторного использования воды и сохранения температуры отработанных воды и воздуха.

Счет за коммуналку, как правило, возглавляет стоимость отопления. Именно на него тратится огромное количество ресурсов, ввиду неэффективного использования полученной энергии, больших ее потерь. Одной из существенных причин потери тепла в доме выступает вентиляция. Зимой с теплым воздухом мы теряем дорогостоящее тепло, летом – драгоценную прохладу.

Читайте также:
Что такое – гидроудар, и в чем природа этого явления.

Принцип работы рекуператора воздуха

  • 1 Инструкция о том, как сделать рекуператор своими руками
  • 2 Как увеличить КПД
  • 3 Что такое рекуператор
  • 4 Виды рекуператоров
  • 5 Принципы работы рекуператора
    • 5.1 Пластинчатый рекуператор
    • 5.2 Роторный рекуператор
    • 5.3 Тепловой утилизатор с промежуточным теплоносителем

Отказаться от вентиляции невозможно, поскольку циркуляция воздуха – необходимое условия здорового микроклимата. Значит нужно средство, способное свободно впускать и выпускать воздух, но препятствующее потерям тепловой энергии. Устройство, способное решить данную задачу носит название рекуператор.

Инструкция о том, как сделать рекуператор своими руками

Создать рекуператор воздуха своими руками для человека, умеющего ими правильно пользоваться, вполне посильная задача. Наиболее подходящим для этой цели специалисты называют пластинчатый рекуператор. Этот тип утилизатора наиболее распространен, особенно его самодельные модели. Недостатки конструкции, среди которых называют обмерзание теплообменника при низкой температуры воздуха на улице и пересечение труб воздуховодов, компенсируются дешевизной и простотой конструкции.

Чтобы смастерить рекуператор воздуха своими руками важны такие материалы, как:

  1. металлический лист (оцинкованная жесть, кровельный лист, оцинкованное железо или любой другой листовой металл) площадью 3–4 м2;
  2. пробка, деревянная рейка или текстолит;
  3. металлический лист или аналогичный материал для создания корпуса;
  4. пластиковые фланцы с наконечниками, соответствующие диаметру труб вентиляции;
  5. герметик;
  6. утеплитель;
  7. силикон.

Создание рекуператора воздуха своими руками проходит в несколько шагов:

  1. Листы металла нарезаются на пластины размером 20 х 30 см. Рекомендуется использовать не менее 3–4 м2 металла. Особое внимание уделяется нарезке. Пластины должны быть нарезаны практически идеально ровно, чего не добиться ножницами по металлу. Инженеры рекомендуют использовать ножовку по металлу или болгарку. Пластины укладывать одну на другую, обеспечивая зазор не менее 4 мм. Для этого проклеивать рамками из термоизоляционного материала (пробка, деревянная рейка, текстолит) по контуру пластин, обеспечивая отверстия для потока воздуха в соответствующем направлении, чередуя перекрестные потоки. По окончанию укладки пластин, все щели пройти герметиком нейтрального состава.
  2. Корпус изготавливается из жести или другого листового металла. Он представляет собой короб подходящего размера, чтобы плотно вместился полученный блок из пластин. В стенках короба прорезать отверстия, в которые вставить заранее приготовленные пластиковые фланцы, соответствующие диаметру воздуховодных труб. Щели необходимо тщательно герметизировать, чтоб не допускать потерь эффективности устройства.
  3. После высыхания герметика полученный блок из пластин разместить в корпусе.

  • Поверх полученного корпуса с уложенным блоком пластин рекомендуется уложить теплоизоляцию (пенопласт, стекловата). Всю полученную конструкцию можно дополнительно упаковать в деревянный ящик.
  • Рекомендуемая скорость потока воздуха составляет 1 м/с.

    Согласно подсчетов специалистов при суммарной площади теплоотдающей поверхности в 3–4 м2 и производительности 150 м3/ч эффективность такого рекуператора должна составить от 50 до 60%.

    Зимой при отрицательных температурах на улице существует вероятность обморожения пластинного блока утилизатора. Чтобы избежать блокировки работы рекуператора на длительный период рекомендуется предусмотреть байпас. Тогда, переключив на него входящий поток воздуха, система быстро оттает благодаря температуре выдуваемого теплого воздуха.

    Для удобства определения обморожения системы можно предусмотреть датчик изменения давления. Однако, поможет и периодическая профилактика перекрыванием холодного воздуха и прогревом системы пластин.

    Ввиду того, что в рекуператоре оседает конденсат, конструкцию рекомендуется оснастить шлангом для слива воды.

    Как увеличить КПД

    Аккуратная сборка и внимание к деталям при создании самодельного утилизатора тепла позволят достичь неплохих показателей эффективности. Однако собранный рекуператор воздуха своими руками можно существенно улучшить и повысить его КПД. Для этого при расчетах конструкции и воплощении ее необходимо предусмотреть следующие нюансы:

    1. Максимальная герметизация устройства;
    2. Использование качественных теплоизолирующих материалов;
    3. Увеличить размеры рекуператора, площадь теплообменной поверхности. Так уменьшится скорость проходимого воздуха через устройство, а соответственно позволит ему лучше прогреться или остыть;
    4. Использование гофрированных пластин или пластин с выштамповками, что существенно увеличит площадь теплообменной поверхности при сохранении общего объема устройства;
    5. Увеличение объема вытяжки по сравнению с притоком. Так, больший объем выходящего воздуха лучше передаст тепло меньшему объему входящего.

    Рекуператор воздуха своими руками – это простой, доступный, дешевый и действенный способ экономить дорогостоящую тепловую энергию и эффективно расходовать невосполнимые природные ресурсы.

    Что такое рекуператор

    Рекуператором называется теплообменник поверхностного типа, который использует температуру выхлопных газов. Благодаря специальному устройству он способен сохранять ее и передавать входящим воздушным потокам, газу либо жидкости.

    Читайте также:
    Характеристики минималистичной мебели, особенности стиля

    Виды рекуператоров

    Рекуператоры бывают различными по своей конструкции и назначению. Но во всех основным является соблюдения принципа сохранение внутренней температуры за счет выхлопного потока.

    Рекуператоры могут иметь различное назначение и использоваться для нагрева или охлаждения:

    1. воздуха или газа;
    2. жидкости.

    По конструкции выделяются рекуператоры:

    1. пластинчатые устройства;
    2. трубчатые;
    3. с вращающимся ротором;
    4. с теплоносителем.

    Принципы работы рекуператора

    Принцип работы рекуператора зависит от его типа. Очевидно, что все перечисленные виды конструкции имеют свои особенности в работе. Отметим здесь наиболее распространенные.

    Пластинчатый рекуператор

    Этот вид представляет монолитную кассету из металл листов. Воздух проходит через такую кассету посредством специальных выштампованых на листах каналах или проложенных специальным промежуточным уплотнителем. Потоки в таком рекуператоре не перемешиваются. Процесс теплообмена осуществляется благодаря одновременному нагреванию пластин одним потоком и остужению – другим. Пластинчатые рекуператоры имеют ряд преимуществ, делающих их самым распространенным типом теплового барьера для дома.

    Основными особенностями пластинчатого рекуператора выступают:

    1. низкая цена;
    2. элементарность конструкции;
    3. компактность;
    4. простота в обслуживании;
    5. простота в чистке (в случае, если кассета разбирается)
    6. доступность материалов для изготовления;
    7. отсутствие механизмов.

    Разборные рекуператоры способны обеспечить высочайший уровень гигиенической чистоты входящего воздуха во время эксплуатации устройства без потерь эффективности.

    При использовании данных устройств стоит помнить всегда о точках росы и о том, что образуется конденсат при эксплуатациях таких теплообменников. При отрицательных температурах воздушного потока пластинчатый блок рекуператора может подвергнутся такому процессу, как обморожение и перекрыть доступ воздуху.

    Наиболее распространенным видом рекуператора ввиду простоты конструкции выступает перекестно-течный. Его эффективность можно определить как «Средний тип», некоторые источники указывают, что их КПД составляет до 60%.

    Роторный рекуператор

    Этот вид теплоутилизатора имеет форму трубы малой длины, наполнен гофрированными стальными пластинами вдоль корпуса. Вращающийся механизм устанавливается по приливно-вытяжной оси. Ротор пропускает сперва нагретый внутренний, а после холодный входящий воздух. Пластины по очереди нагреваются и охлаждаются, сохраняя внутреннюю температуру воздуха. Такой тип рекуператора признается наиболее эффективным. Однако, особенность конструкции не позволяет сделать его компактным, специалисты признают недостатком громоздкость такого устройства.

    Тепловой утилизатор с промежуточным теплоносителем

    В таких рекуператорах используются жидкостные теплообменники, где циркулирует раствор этиленгликоля (эффективный теплоноситель). В таких утилизаторах приливная и вытяжная секции разделены и разведены на определенное расстояние. Эта особенность позволяет применять такие устройства для среды, входящие и выходящие потоки которых нельзя смешивать. Теплоноситель циркулирует либо естественным образом, либо посредством насоса. Для повышения эффективности такого утилизатора тепла необходима тонкая регулировка потока теплоносителя в соответствии с проектом.

    Чем отличается блок питания для светодиодных ламп и электронный трансформатор для галогенных ламп

    При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?».

    Из письма с вопросом одного из постоянных посетителей сайта: « Можно ли заменить галогенные лампы на нормальные светодиоды? Я снимаю квартиру, где основное освещение состоит из примерно 30-40 галогенных ламп по 10 Вт каждая, питаемых от 12 В. Лампочки практически дают мало света, а электричество, безусловно, потребляют больше, чем светодиоды. Не говоря уже о том, что эти галогенные лампочки умирают, как мухи, и их нужно довольно часто менять. И еще они шумят. Можно ли эти лампочки заменить на светодиодные не заменяя всю люстру? »

    В данном случае просто заменить старые 12-вольтовые галогенные лампы на светодиодные не получится. Нужно разобраться с источником питания.

    Для галогенок чаще всего использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

    Из этой статьи вы узнаете:

    Что такое электронный трансформатор,

    Как устроен и работает электронный трансформатор,

    Как устроен и работает блок питания для светодиодных ламп 12В ,

    В чем отличия блоков питания для LED-лент и ламп от электронных трансформаторов для галогенных ламп.

    Что такое электронный трансформатор?

    Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

    Структурная схема устройства изображена на рисунке ниже.

    Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

    Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

    Что мы видим на схеме? Первое что бросается в глаза – отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:

    Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

    Рассмотрим выходные осциллограммы.

    Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

    Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

    Блоки питания для светодиодных ламп 12В

    Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

    Или другой вариант:

    Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

    Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

    Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

    Принцип работы подобных ИИП мы рассматривали в статье ранее – Схемотехника блоков питания светодиодных лент.

    5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

    Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

    1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

    2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

    3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

    Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

    4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

    5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

    Заключение

    Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь – В чем отличие блока питания от драйвера для светодиодов

    Трансформаторы для галогенных ламп. Как выбрать и установить?

    Все большую популярность получает комплексное освещение помещений с точечными светильниками. При создании гармоничного дизайна часто используются галогенные лампы, которые обладают отличной цветопередачей и имеют постоянную яркость светового потока весь срок своей службы. Также они одинаково подходят для бытового и промышленного освещения за счет щадящего режима свечения, не вредящего зрению.

    Галогенные светильники делят по типам переменного напряжения:

    • 220 Вт;
    • 6, 12, 24 Вт.

    Низковольтные лампы предпочтительнее, поскольку предоставляют дополнительную безопасность. Они нередко используются в места с повышенной влажностью, таких как ванные комнаты, погреба, подвальные помещения и т.д. Например, галогенные лампы нашли применение в банях и саунах, о чем вы можете прочесть тут. Также благодаря своим характеристикам, они наравне со светодиодными лампами являются основной частью в создании архитектурной подсветки фасадов зданий, о чем рассказывается здесь. Однако для своей эксплуатации производится подключение галогенных ламп через трансформатор, т.е. прибор, понижающий напряжение.

    Устройство и принцип работы трансформаторов

    Электронные трансформаторы служат для снижения стандартного электрического тока с 220 В до 12 В в условиях обслуживания галогенных ламп. Прибор представляет собой двухтактный автогенератор (импульсный блок питания) с довольно простым устройством. Он выполняется по полумостовой схеме и имеет форму небольшой коробки с 4 выходящими из нее кабелями: двумя на вход с напряжением в 220В и двумя на выход с напряжением в 12 В. Корпус чаще всего выполнен из алюминия или поликарбоната, закреплен двумя-тремя болтами.

    Схема электронного трансформатора

    В зависимости от конструкции и производителя внутри находится кольцевой с двумя обмотками или ш-образный сердечник из феррита. Первый тип с кольцевым сердечником проще переделать под свои нужды (из преобразователей делают ИБП и блоки питания для других электронных устройств) В роли силовой части прибора выступают биполярные транзисторы, включенные по схеме полумоста. Их рабочая частота в противофазе составляет 30-35 кГц.

    Конструкцию дополняют транзисторы, через которые перекачивается вся мощность. Установленные в трансформаторе диоды используются для защиты транзисторов от обратного напряжения.

    В некоторых случаях конструкция позволяет преобразующему устройству взаимодействовать с диммером. К регулятору подключается от одного до нескольких трансформаторов.

    В современные осветительные приборы нередко заранее встраиваются преобразователи, их также монтируют в мебель, под потолки и за гипсокартонные плиты, что обеспечивает небольшую удаленность от ламп. В данном случае становятся очевидными преимущества именно электронных преобразователей, которые имеют небольшой вес и скромные размеры, обеспечивают постоянное напряжение, что не дает светильникам быстрее выходить из строя и терять свои качества. Многие понижающие трансформаторы для галогенных ламп дополняются защитой от короткого замыкания, плавным пуском освещения и автоматической подстройкой выходного напряжения.

    Виды трансформаторов

    Выделяют два вида трансформаторов, предназначенных для галогенных ламп:

    • электромагнитные или индукционные (тороидальные);
    • электронные (импульсные).

    Устройство электромагнитных преобразователей основано на использовании электромагнитной связи в индукционных катушках. Они являются очень надежными, но при этом обладают большим весом (в несколько килограмм), внушительными габаритами, чувствительны к перепадам напряжения (могут уменьшить срок работы ламп) и значительно нагреваются во время эксплуатации.

    Их преимуществом является простота и возможность работать с диммером, при том что электронные трансформаторы чаще всего не могут быть установлены вместе с регулятором.

    Электромагнитный трансформатор для питания галогенных ламп

    Электронные преобразователи компактнее, выдают стабилизированное напряжение, меньше нагреваются и оборудуются дополнительными функциями стабилизации и безопасности. В основе их работы лежит преобразование электрической энергии через полупроводниковые устройства и электронные приборы.

    Трансформаторы категорически нельзя включать без положенной нагрузки.

    Наименьшая допустимая мощность для преобразователя должна быть указана в инструкции или на упаковке вместе с наибольшей мощностью, например, 50-200 Вт, где первая цифра – минимум. В нашем примере к прибору должна быть обязательно подключена хотя бы одна лампа с напряжением от 50 Вт.

    Электронный трансформатор для галогенных ламп

    Расчет мощности трансформатора для галогенной лампы

    В процессе монтирования освещения с использованием электронного трансформатора очень важно подобрать подходящую мощность. Выбрав недостаточно мощный преобразователь, мы подвергаем лампы большой нагрузке, они могут скорее выйти из строя, также появляется риск для всей системы. В обратном случае устройство также имеет негативное влияние на осветительные приборы.

    Прежде всего, стоит проверить максимальную мощность трансформатора. Иногда советуют от этого числа отнять 30%, хотя стандартом для коэффициента надежности являются 10-15%. Например, четыре 12 В лампы с показателем в 40 Вт в сумме дают 160 Вт, а с коэффициентом запаса мы получаем 184 Вт. Чтобы обеспечить их правильным преобразователем, необходимо выбрать устройство с наиболее близкой мощностью из числа стандартных моделей (от 50 до 400 Вт), в нашем случаи мы получаем трансформатор в 200 Вт.

    Схема подключения и подключение, рекомендации

    Инструкции к трансформаторам обязательно содержат несколько основных правил:

    • преобразователь и лампа должны соединяться кабелем не длиннее полтора метров (с сечением от 1 кв мм, в противном случае яркость лампы будет недостаточной, свет неравномерным и провод будет нагреваться);
    • для подключения 2-х и более светильников нужно всегда использовать схему «звезда» (к каждой лампе подключается отдельный кабель, все они должны быть одинаковой длины);
    • сечение кабеля необходимо увеличивать пропорционально длине (если ее нужно сделать более 1,5 метров);
    • расстояние до лампы должно составлять не менее 20 см;
    • правильно просчитать мощность ламп и их соответствие трансформатору.

    Схем подключения может быть несколько. Первая, самая простая, поскольку для нее используется выключатель с одной клавишей и один трансформатор. Проводники подключаются на первичные клеммы «входа» трансформатора L и N. Чтобы закрепить лампы от стороны 12 В на вторичные клеммы преобразователя на «выходе» используют дополнительные медные провода (с сечением минимум 1,2 кв мм). Светильники при этом обязательно устанавливают параллельно.

    Сечение и длина кабелей также должны быть одинаковыми, в противном случае свечение ламп может значительно отличаться.

    Второй вариант предполагает деление ламп на две равные части, после чего они подключаются к двум отдельным трансформаторам. В нашем примере были 4 лампы по 40 В, мощность двух из них составляет 80 Вт, с коэффициентом запаса – 90 Вт, поэтому взять нужно трансформатор на 105 Вт. Лучше каждый трансформатор питать через отдельные провода. Их соединение в распределительной коробке упростит последующий ремонт. При таком варианте подключения можно использовать как одноклавишный, так и двухклавишный выключатель, а также радиовыключатели света.

    Схема подключения 2-х и более галогенных ламп к трансформатору

    В случае, когда уже сделан окончательный вариант проводки, каждую лампочку можно запитать отдельно. Это поможет сэкономить деньги и оставит систему в рабочем состоянии, если один трансформатор сломается. Также необходимо помнить о том, что преобразователи нагреваются, поэтому их устанавливают на безопасных поверхностях, которые не плавятся и не воспламеняются. Для нормальной вентиляции приборы монтируют в углубления не менее 12 л в объеме. Именно поэтому следует быть осторожным в выборе галогенных люстр для натяжного потолка. Подробнее о рекомендациях в этой статье.

    Производители

    Большинство производителей предоставляют трансформаторы с обязательной защитой от перегрева и короткого замыкания (Feron, Comtech, Osram, VosslohSchwabe и др.). Иногда компании расширяют функционалы преобразователей. Например, продукция Philips, соответствующая международным стандартам IECи ENEC, обладает тремя уровнями защиты (от перегрева, перепадов напряжения и короткого замыкания), долгим сроком службы до 50000 часов. Также компания выпускает диммируемые трансформаторы для галогенных ламп.

    Компания VosslohSchwabe производит устройства с корпусами из полиамида, пригодные для установки на горючие поверхности.

    Одними из самых надежных считаются устройства немецкой торговой марки Osram, которые без боязни можно монтировать под подвесные потолки. Тем не менее, они являются более дорогими, чем их китайские аналоги, производимые компанией Feron.

    Таким образом, в соотношении цена/качество обычно лучшими оказываются товары из Германии. Все же, при условии правильной установки трансформатора, значительно увеличивается срок работы устройства и подключенных к нему ламп и можно подобрать более дешевые и удобные для ремонта варианты.

    Что такое электронный трансформатор для галогенных ламп?

    Электронные трансформаторы. Схемы, фото, обзоры

    Автор: alex123al97 (Александр Журавский), altracker97@gmail.com
    Опубликовано 22.11.2017
    Создано при помощи КотоРед.

    Электронные трансформаторы для галогенных ламп (ЭТ) – не теряющая актуальности тема как среди бывалых, так и очень посредственных радиолюбителей. И это не удивительно, ведь они весьма просты, надежны, компактны, легко поддаются доработке и усовершенствованию, чем существенно расширяют сферу применения. А в связи с массовым переходом светотехники на светодиодные технологии ЭТ морально устарели и сильно упали в цене, что, как по мне, стало чуть ли не главным их преимуществом в радиолюбительской практике.

    Про ЭТ есть много различной информации относительно преимуществ и недостатков, устройства, принципа работы, доработки, модернизации и т.д. А вот найти нужную схему, особенно качественных устройств, или приобрести блок с нужной комплектацией бывает весьма проблематично. Поэтому в этой статье я решил изложить фото, срисованные схемы с моточными данными и краткие обзоры тех устройств, которые попадались (попадутся) мне в руки, а в следующей статье планирую описать несколько вариантов переделок конкретных ЭТ из этой темы.

    Все ЭТ для наглядности я условно делю на три группы:

    1. Дешевые ЭТ или “типичный Китай”. Как правило только базовая схема из самых дешевых элементов. Зачастую сильно греются, низкий КПД, при незначительном перегрузе или КЗ сгорают. Иногда попадается “фабричный Китай”, отличающийся более качественными деталями, но все равно далекий от совершенства. Самый распространенный вид ЭТ на рынке и в обиходе.
    2. Хорошие ЭТ. Главное отличие от дешевых – наличие защиты от перегрузки (КЗ). Надежно держат нагрузку вплоть до срабатывания защиты (обычно до 120-150%). Комплектация дополнительными элементами: фильтрами, защитами, радиаторами происходит в произвольном порядке.
    3. Качественные ЭТ, отвечающие высоким европейским требованиям. Хорошо продуманны, комплектуются по максимуму: хорошим теплоотводом, всеми видами защит, плавным пуском галогенок, входными и внутренними фильтрами, демпферными, а иногда и снабберными цепями.

    Теперь давайте перейдем к самим ЭТ. Для удобства они отсортированы по выходной мощности в порядке возрастания.

    1. ЭТ мощностью до 60 Вт.

    1.1. L&B

    1.2. Tashibra

    Два вышеизложенные ЭТ – типичные представители самого дешевого Китая. Схема, как видите, типовая и широко распространенная в интернете.

    1.3. Horoz HL370

    Фабричный Китай. Хорошо держит номинальную нагрузку, греется не сильно.

    1.4. Relco Minifox 60 PFS-RN1362

    А вот представитель хорошего ЭТ итальянского производства, оснащенный скромным входным фильтром и защитами от перегрузки, перенапряжения и перегрева. Силовые транзисторы выбраны с запасом по мощности, поэтому не требуют радиаторов.

    2. ЭТ мощностью 105 Вт.

    2.1. Horoz HL371

    Подобный вышеизложенной модели Horoz HL370 (п.1.3.) фабричный Китай.

    2.2. Feron TRA110-105W

    На фото две версии: слева более старая (2010 г.в.) – фабричный Китай, справа более новая (2013 г.в.), удешевленная до типичного Китая.

    2.3. Feron ET105

    Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. К сожалению фото платы не сохранилось.

    2.4. Brilux BZE-105

    Подобный Relco Minifox 60 PFS-RN1362 (п.1.4.) хороший ЭТ.

    3. ЭТ мощностью 150 Вт.

    3.1. Buko BK452

    Удешевленный до фабричного Китая ЭТ, в который не впаяли модуль защиты от перегрузки (КЗ). А так, блок весьма неплох по форме и содержанию.

    3.2. Horoz HL375 (HL376, HL377)

    А вот и представитель качественных ЭТ с весьма богатой комплектацией. Сразу кидается в глаза шикарный входной двухкаскадный фильтр, мощные парные силовые ключи с объемным радиатором, защиты от перегруза (КЗ), перегрева и двойная защита от перенапряжения. Данная модель знаменательна еще и тем, что является флагманской для последующих: HL376 (200W) и HL377 (250W). Отличия отмечены на схеме красным цветом.

    3.3. Vossloh Schwabe EST 150/12.645

    Очень качественный ЭТ от всемирно известного немецкого производителя. Компактный, хорошо продуманный, мощный блок с элементной базой от лучших европейских фирм.

    3.4. Vossloh Schwabe EST 150/12.622

    Не менее качественная, более новая версия предыдущей модели (EST 150/12.645), отличающаяся большей компактностью и некоторыми схемными решениями.

    3.5. Brilux BZ-150B (Kengo Lighting SET150CS)

    Пожалуй, самый качественный ЭТ, который мне попадался. Очень хорошо продуманный блок на очень богатой элементной базе. Отличается от подобной модели Kengo Lighting SET150CS только трансформатором связи, который чуть меньше размером (10х6х4мм) с количеством витков 8+8+1. Уникальность этих ЭТ состоит в двухступенчатой защите от перегрузки (КЗ), первая из которых самовосстанавливающаяся, настроена на плавный пуск галогенных ламп и легкий перегруз (до 30-50%), а вторая – блокирующая, срабатывает при перегрузе более 60% и требующая перезагрузки блока (кратковременное отключение с последующим включением). Также примечательностью является довольно большой силовой трансформатор, габаритная мощность которого позволяет выжимать с него до 400-500 Вт.

    Мне лично в руки не попадались, но видел на фото подобные модели в том же корпусе и с тем же набором элементов на 210Вт и 250Вт.

    4. ЭТ мощностью 200-210 Вт.

    4.1. Feron TRA110-200W (250W)

    Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Наверное, лучший в своем классе блок, рассчитанный с большим запасом мощности, а посему является флагманской моделью для абсолютно идентичного Feron TRA110-250W, выполненного в таком же корпусе.

    4.2. Delux ELTR-210W

    По максимуму удешевленный, немного топорный ЭТ с множеством не впаянных деталей и теплоотводом силовых ключей на общий радиатор через кусочки электрокартона, который можно отнести к хорошим только из-за наличия защиты от перегруза.

    4.3. Светкомплект EK210

    Согласно электронной начинке подобный предыдущему Delux ELTR-210W (п.4.2.) хороший ЭТ с силовыми ключами в корпусе TO-247 и двухступенчатой защитой от перегруза (КЗ), не смотря на которую достался сгоревшим, причем практически полностью, вместе с модулями защиты (отчего отсутствуют фото). После полного восстановления при подключении нагрузки близкой к максимальной снова сгорел. Поэтому ничего толкового про этот ЭТ сказать не могу. Возможно брак, а возможно и плохо продуман.

    4.4. Kanlux SET210-N

    Без лишних слов довольно качественный, хорошо продуманный и очень компактный ЭТ.

    ЭТ мощностью 200Вт можно также найти в п.3.2.

    5. ЭТ мощностью 250 Вт и более.

    5.1. Lemanso TRA25 250W

    Типичный Китай. Та же общеизвестная Tashibra или жалкое подобие Feron TRA110-200W (п.4.1.). Даже не смотря на мощные спаренные ключи с трудом держит заявленные характеристики. Плата досталась искореженная, без корпуса, посему фото оных отсутствует.

    5.2. Asia Elex GD-9928 250W

    По сути усовершенствованная до хорошего ЭТ модель TRA110-200W (п.4.1.). До половины залита в корпусе теплопроводным компаундом, что значительно усложняет его разборку. Если такой попадется и потребуется разборка, поставьте его в морозилку на несколько часов, а после в темпе отламывайте по кусочкам застывший компауд, пока он не нагрелся и снова не стал вязким.

    Следующая по мощности модель Asia Elex GD-9928 300W имеет идентичный корпус и схему.

    ЭТ мощностью 250Вт можно также найти в п.3.2. и п.4.1.

    Ну вот, пожалуй, и все ЭТ на сегодняшний момент. В заключение опишу некоторые нюансы, особенности и дам парочку советов.

    Многие производители, особенно дешевых ЭТ, выпускают данную продукцию под разными названиями (брендами, типами) используя одну и ту же схему (корпус). Поэтому при поиске схемы следует более обращать внимание на ее подобность, нежели на название (тип) устройства.

    Определить по корпусу качество ЭТ практически невозможно, поскольку, как видно на некоторых фото, модель может быть недоукомплектованной (с отсутствующими деталями).

    Корпуса хороших и качественных моделей как правило выполнены из качественного пластика и разбираются довольно легко. Дешевые нередко скрепляются заклепками, а иногда и склеиваются.

    Если после разборки определение качества ЭТ затруднительно, обратите внимание на печатную плату – дешевые обычно монтируются на гетинаксе, качественные – на текстолите, хорошие, как правило, тоже на текстолите, но бывают и редкие исключения. Про многое скажет и количество (объем, плотность) радиодеталей. Индуктивные фильтра в дешевых ЭТ всегда отсутствуют.

    Также в дешевых ЭТ теплоотвод силовых транзисторов либо полностью отсутствует, либо выполнен на корпус (металлический) через электрокартон или ПВХ пленку. В качественных и многих хороших ЭТ он выполнен на объемном радиаторе, который обычно изнутри плотно прилегает к корпусу, также используя его для рассеивания тепла.

    Присутствие защиты от перегрузки (КЗ) можно определить по наличию хотя-бы одного дополнительного маломощного транзистора и низковольтного электролитического конденсатора на плате.

    Если планируется приобретение ЭТ, то обратите внимание, что есть много флагманских моделей, которые по цене обойдутся дешевле, чем их “более мощные” копии.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: