Что такое токовые клещи, для чего они нужны и как ими пользоваться

Пробник, мультиметр и токовые клещи — что это и зачем нужны эти инструменты

Содержание

Содержание

Электричество и электроприборы окружают нас со всех сторон. Так что приборы, определяющие те или иные параметры электрической цепи, сегодня нужны каждому: не будешь же вызывать электрика, чтобы проверить батарейку или лампочку. Какой из приборов лучше подойдет для выполнения самых распространенных домашних задач?

Пробник — он же индикаторная отвертка

Этот инструмент, несмотря на простоту, имеет множество возможностей и способен решить большинство бытовых задач — надо только подобрать правильную модель и правильно ей пользоваться.

Пробники бывают нескольких видов, заметно отличающихся по функциональности:

1. Индикаторные отвертки без питания с неоновой лампочкой или ЖК-индикатором. Это самый простой и недорогой вид индикаторных отверток, но функционал их невелик.

С помощью такого пробника можно только определить фазный провод. Для этого следует коснуться жалом проверяемого проводника или клеммы, прижав палец к контакту на ручке.

Если на проводнике есть 220 В, лампочка загорится. Но больше ничего пробником без питания сделать не получится — ни найти нулевой провод, ни проверить его целостность, ни даже определить наличие напряжения ниже 60-70 В.

2. Индикаторные отвертки со своим питанием от батареек и схемой на полевом транзисторе. Внешне они могут быть очень похожи на рассмотренные ранее, но отличить их довольно просто: во-первых, у моделей с прозрачным корпусом внутри видны батарейки-таблетки.

Во-вторых, если прикоснуться одновременно к жалу и к контакту на корпусе, индикатор загорится.

В-третьих, некоторые модели снабжены выключателем, что также говорит о наличии автономного питания.

Это уже более функциональный инструмент, с помощью которого можно выполнить множество задач:

  • Определение фазы — для этого нужно коснуться проверяемой клеммы жалом, не притрагиваясь к контакту на корпусе. Если напряжение на клемме есть, светодиод загорится.
  • Проверка заземления. Чтобы проверить, заземлен ли электроприбор, прикоснитесь жалом пробника к металлу его корпуса (нужно найти неокрашенный участок или процарапать краску до металла в незаметном месте). Прибор при этом должен быть включен в сеть. Если заземления нет, загорится светодиод.

Определение обрыва провода. Чтобы проверить целостность провода, оголите оба его конца, возьмите один конец в руку, а к другому прикоснитесь жалом пробника, прижав палец к контакту на корпусе. Если провод целый, загорится светодиод индикатора.

Проверка лампочек, предохранителей, ТЭНов и т. п. Чтобы проверить, целый ли предохранитель, прикоснитесь пальцами к одной его клемме, а к другой — жалом пробника. Второй рукой при этом надо касаться контакта на корпусе пробника. Если предохранитель целый, загорится индикатор. Так же проверяются лампочки, ТЭНы и другие элементы со свободным протеканием электротока.

Бесконтактное определение фазы. Если прикоснуться пальцем к контакту на корпусе, пробник будет определять наличие напряжения в проводе уже на некотором расстоянии — достаточно поднести жало на 1-2 см к проводнику.

Поиск проводов в стене. Предыдущий способ позволяет искать провода под напряжением под слоем штукатурки — только не очень толстым, не более 2 см. Для этого следует, прижав палец к контакту на корпусе, вести жалом по стене. В месте, где под стеной проходит провод, индикатор будет загораться. Иногда эффективней бывает искать провод другим способом — держать пробник за жало и вести его вдоль стены вплотную к контакту на корпусе. Площадь контакта больше, чем площадь жала, и в таком режиме чувствительность пробника может быть выше.

3. Бесконтактные пробники с высокой чувствительностью, не требующие контакта с проводом для определения фазы или заземления.

Они отличаются максимальной безопасностью, так как для работы с ними не требуется доступ к оголенным проводам. Также с помощью бесконтактных пробников обычно можно искать скрытую проводку, причем не обязательно под напряжением — они могут работать как детектор металлов.

В то же время, при работе с электроаппаратурой или проверке многожильных кабелей использовать такие пробники бывает неудобно, так как сложно отделить сигнал нужного провода от помех, генерируемых прочими близко расположенными проводниками.

Мультиметр

Если пробник позволяет определить только качественные показатели (есть напряжение/нет напряжения, есть контакт/нет контакта), то мультиметром можно узнать численные значения этих характеристик. Поэтому мультиметры часто используются электронщиками, но и в домашнем хозяйстве он также может пригодится.

Мультиметром можно замерить точное значение напряжения в розетке. Для этого нужно выставить на нем соответствующий режим измерения (переменное напряжение — ACV, предел не менее 300 V), правильно подключить щупы и вставить оба щупа в розетку. Обычно один щуп подключается в общий разъем, второй — в разъем переменного напряжения.

По ГОСТу напряжение в розетке должно быть в пределах 210-250 В. Если напряжение в вашей розетке сильно выходит за указанные пределы, это повод звонить в электроснабжающую организацию. Бытовым приборам вредно как пониженное, так и повышенное напряжение.

Не пытайтесь проверить мультиметром силу тока в розетке (в режиме А) — в лучшем случае сгорит предохранитель мультиметра, в худшем — произойдет оплавление и воспламенение проводки, а прибор выйдет из строя.

Мультиметр может помочь при определении исправности блока питания ноутбука или другого гаджета с круглым разъемом питания. Для этого надо посмотреть на корпусе блока питания выходное напряжение и установить на мультиметре соответствующий предел измерения постоянного напряжения (DCV). 20 В обычно достаточно, но, если блок питания выдает, к примеру, 36 В, предел должен быть выше этого значения. После этого следует включить блок питания в сеть и прикоснуться щупами к контактам разъема. Обычно один из контактов находится внутри цилиндра разъема в виде штырька или металлической трубочки, а второй — снаружи.

За полярностью можно не следить, если перепутать «минус» с «плюсом», ничего страшного не произойдет, просто значения на экране выведутся со знаком «–». Если после этого на экране остается 0, значение ниже указанного на корпусе БП или же оно постоянно меняется — блок питания неисправен и требует замены.

В режиме прозвонки мультиметром удобно определять целостность проводов и искать концы одного провода в многожильных кабелях. Для этого надо выставить режим прозвонки и прикоснуться щупами к разным концам провода. Удобно то, что в большинстве мультиметров удачная прозвонка сопровождается звуковым сигналом, то есть не нужно смотреть на прибор в процессе работы.

Мультиметром можно проверить батарейки. Проще и безопаснее всего проверить напряжение в режиме измерения постоянного напряжения с пределом 2-20 В (в зависимости от номинального напряжения батарейки). Для полностью заряженной «пальчиковой» или «мизинчиковой» батарейки напряжение должно быть в пределах 1,4-1,6 В. Слегка разрядившиеся элементы могут дать напряжение 1,2-1,4 В, а полностью разряженные — 1,1 В и менее.

Однако этот способ не обладает высокой достоверностью — вполне могут попасться батарейки, дающие 1,4 В, при этом практически не сохранившие заряда. Более надежный способ — измерение тока короткого замыкания. Надо переключить мультиметр в режим измерения постоянного тока на максимальном пределе (10-20 А, возможно, потребуется переставить щуп в другое гнездо на мультиметре) и кратковременно коснуться щупами полюсов батарейки. Касаться нужно до достижения максимального значения на табло, но в любом случае, не дольше 1,5-2 сек. Проверять таким способом рекомендуется только батарейки, аккумуляторные элементы могут иметь высокий ток КЗ, что приведет к выгоранию предохранителя в мультиметре и повреждению самого аккумулятора.

  • Ток КЗ в 3-6 А показывает, что батарейка заряжена и может использоваться в гаджетах с высоким энергопотреблением: фонарики, цифровые фотоаппараты, игрушки с электродвигателями и т. п.
  • Батарейка с током КЗ в 2-3 А еще может использоваться в электроприборах с низким энергопотреблением: пульты ДУ и радиоуправления, электронные часы, термометры и т. п.
  • Ток КЗ в 1А и менее сигнализирует о разряде батарейки — в пульте ДУ она, может, еще и поработает, но недолго. Во что-либо более энергопотребляющее такие батарейки ставить уже смысла нет.

Также мультиметром можно более точно определить исправность ТЭНов бойлеров, чайников, стиральных машин и другой техники, чем при использовании пробника. Сначала нужно отключить питание электроприбора и снять его крышку, чтобы получить доступ к ТЭНу. Проверять целостность ТЭНа через вилку провода питания не стоит — в обесточенном состоянии цепь питания может быть разорвана электроникой прибора, и никакой проверки не выйдет. Далее следует отсоединить провода, подходящие к клеммам ТЭНа, чтобы другие элементы прибора не вносили искажений в результаты измерения. Далее следует проверить:

    Сопротивление между клеммами ТЭНа в режиме замера сопротивления с пределом 200 Ом. В зависимости от мощности оно может составлять от 20 до 60 Ом, но в любом случае меньше 200.
    Если сопротивление близко к 0 (0-2 Ом), в ТЭНе короткое замыкание, пользоваться им нельзя. Высокое же сопротивление говорит об обрыве ТЭНа.

Сопротивление между корпусом (землей) и клеммами ТЭНа в режиме измерения сопротивления с максимальным пределом. Прибор должен показать максимум или ошибку измерения.
Любое положительное значение ниже верхнего предела, в принципе, говорит о пробое ТЭНа на корпус и небезопасности его использования. Вообще, сопротивление изоляции имеет вполне конечные значения, но бытовые мультиметры его измерять не умеют.

По такому же принципу проверяются обмотки электродвигателей. Разве что разброс сопротивлений исправных обмоток выше — у маломощных электродвигателей оно может составлять единицы Ом, у двигателей помощнее — десятки и сотни.

Также мультиметром можно измерять характеристики различных электронных компонентов — конденсаторов, диодов, транзисторов и т. п., но это тема отдельной статьи.

Токовые клещи

Иногда возникает необходимость замерить потребляемый электроприбором ток (или мощность). Теоретически ток замерить можно с помощью мультиметра, но практически это не всегда возможно. Во-первых, не все мультиметры способны измерять переменный ток. Во-вторых, для измерения токов от 1А и выше в сети 230 В тонкие штатные провода не подходят — у них слишком высокое сопротивление. В-третьих, измерение тока мультиметром связано с опасностью поражения электротоком, так как для замера прибор надо включать в разрыв цепи питания. Поэтому намного проще и безопаснее бывает воспользоваться токовыми клещами.

Современные токовые клещи обычно являются универсальным инструментом и могут выполнять функции обычного мультиметра. Соответственно, с ними можно делать все, перечисленное в предыдущем разделе.

Главным отличием такого прибора являются те самые клещи — бесконтактная токоизмерительная катушка. Для измерения тока клещами вовсе не обязательно размыкать цепь — достаточно поместить одиночный провод внутрь катушки. В этом проявляется главное неудобство измерения — обычно у электроаппаратуры нулевой и фазный проводники проложены в одном кабеле под общей изоляцией. Поэтому для удобства использования токовых клещей электрики часто пользуются специализированным (обычно самодельным) удлинителем с раздельными проводами.

С использованием такого удлинителя измерение тока клещами становится абсолютно безопасной и простой процедурой.

Для чего предназначены токоизмерительные клещи?

Измерение количества электричества, прошедшего за единицу времени через сечение проводника (сила тока — I), традиционно осуществляется при разрыве цепи с подключением в этот момент к нему специального устройства, производящего измерение. Токоизмерительные клещи применяются для определения интенсивности электромагнитного поля, возникающего рядом с проводником. Их использование ускоряет и упрощает процесс измерений.

Что измеряют токоизмерительными клещами?

Перед приобретением этого прибора нужно определиться, для каких целей предназначены электроизмерительные клещи.

Они представляют собой трансформатор с подключенным амперметром. Непосредственно устройство — первичная обмотка трансформатора. Размещение внутри нее проводника способствует индуцированию электротока на обмотку из-за возникающего электромагнитного поля. Затем он попадает на вторичную обмотку катушки, показания с которой считываются амперметром. Показания этого прибора пересчитывают с поправкой на коэффициент трансформации, указываемый на нем. Трансформатор с постоянным током не работает, поэтому описанные токовые клещи — для переменного тока.

Электроизмерительные клещи, изготовляемые сегодня, используются для значений, измеряемых при постоянном токе. На место амперметра помещается датчик Холла, улавливающий наличие и напряжение электромагнитного поля.

Используя эти приборы, производят следующие замеры:

  • нагрузку сети, имеющуюся в наличии по факту;
  • точность показаний различного оборудования, предназначенного для учета электроэнергии, сравнивая показания на них с показаниями, полученными при измерении клещами;
  • мощности бытовых и использующихся в профессиональной деятельности электроприборов.

Токовые клещи для постоянного тока дороже своих аналогов для переменного вида, но более точные и имеют повышенные показатели качества.

Инструмент, использующийся совместно с цифровым мультиметром, позволяет избавить пользователя от вычислений искомой величины, поскольку прибор имеет встроенный калькулятор.

Принцип работы токоизмерительных клещей

При использовании любых способов основной принцип — измерение. Он аналогичен как при применении мультиметров для повседневного использования (до 1000 В), так и профессиональных (выше 1000 В). Бытовые измерительные клещи одноручные, а профессиональные — преимущественно двуручные. Приобретать профессиональные приборы имеет смысл при работе с высоковольтными сетями.

Электроизмерительные клещи, соединенные с мультиметром, позволяют выполнять процесс измерения в такой последовательности:

  • обнаруживается провод для измерения электротока (обхват инструментом нескольких проводов при замере способствует получению неверного результата);
  • подбираются диапазон и режим тестера — при неизвестном значении I измерения начинают с наибольшей шкалы;
  • помещают в токовые клещи тот проводник, в котором необходимо измерить I (для достижения точного измерения провод размещают по центру перпендикулярно относительно корпуса прибора).

Режим измерения — автоматический, цифры отображаются на дисплее.

На простом примере можно продемонстрировать, как проверить нагрузку в сети 220 В. Положение переключателя клещей для того, чтобы померить ток — АС 200, клещи обхватывают проводник, после чего снимают показания. Находят произведение измеренного значения и напряжения. Рассчитанная величина может сопоставляться со значениями электросчетчиков.

Конструктивные элементы токоизмерительных клещей

Электроизмерительные клещи в своем составе имеют следующие основные элементы:

  • разъемы, в которые подключаются соответствующие щупы;
  • дисплей, на котором отображается результат измерения;
  • переключатель режимов;
  • кнопку разжатия инструмента;
  • магнитопровод (сами клещи).

При измерении постоянного тока схема прибора включает:

  • трансформатор электротока;
  • мост выпрямления.

Вторичная обмотка к ключам подключается комплектом шунтов.

Токовые клещи подразделяются на одно- и двуручные. Одноручные в конструкции объединяют рукоятку и изолирующую часть. Раскрытие осуществляется нажимным рычагом. Работа производится одной рукой.

У двуручных приборов размер ручек превышает 13 см, а изолирующая часть — от 38 см и более. Конструктивной особенностью является их использование 2 руками.

При покупке определяются, выбирая, как выбрать необходимый инструмент. В торговых точках присутствует большой ассортимент этих устройств с различным функционалом, от чего на них и зависит цена. При покупке потребитель должен определиться с необходимым функционалом, часть из которого может быть излишней.

В основном инструмент предназначен для решения следующих задач:

  • измерять напряжение в сети и выдавать амперы;
  • определять частоту электротока;
  • прозванивать провода.

Режимы измерений

Применяют 2 метода определения силы тока:

  • прямое;
  • непрямое (индуктивное) измерение.

Первый способ производится при подсоединении амперметра к разрыву электрической цепи. Электроток проходит через прибор, на дисплее появляется информация о значении величины I.

Достоинства этого метода:

  • точность измерения, зависящая от класса оборудования;
  • легкость и доступность выполнения замеров.
  • невозможно измерять из-за особенностей конструкции большие величины электротоков;
  • без разрыва нельзя замерить параметры цепи;
  • замеры выполняются только в той цепи, которая подключена к прибору.

Если электроизмерительные клещи выступают как трансформатор тока в роли вторичной катушки, то используется индуктивный способ.

  • безопасность;
  • осуществляются замеры больших значений электричества;
  • нет необходимости в разрыве цепи для осуществления измерений;
  • мобильность выполняемых замеров.

Но и он не лишен недостатков:

  • измерения нельзя выполнить в труднодоступных местах;
  • при небольших значениях определяемых параметров — большая погрешность.

При применении этого инструмента для электрика полезно знать некоторые нюансы, улучшающие качество проводимых операций.

При рассмотрении, как пользоваться токоизмерительными клещами при слишком маленьком значении I в проводнике, не определяемом тестером в точности, нужно воспользоваться наматыванием проводника на одну из рабочих частей прибора. На дисплей выводятся сведения о суммарном показателе, точное значение определяют отношением полученной величины к числу витков.

Если значение электротока больше максимально возможного для тестера, на экране появляется «1». Диапазон выполняемых замеров увеличивается, они повторяются.

Ток утечки обнаруживают при его поиске на заземляющем проводе, а также при обхвате клещами для измерения тока нуля и фазы. Если на экране появится число, отличное от «0», то утечка присутствует, пробой изоляции нужно искать на корпусе.

При наличии кнопки «Hold» моделью токоизмерительных клещей можно измерять электроток в труднодоступных местах. При производстве подобного действия токовые клещи охватывают провод, после чего нажимается эта кнопка, что приводит к фиксации значения на экране, после чего ее просматривают в любом доступном месте.

Переключатель режимов измерений может находиться в различных положениях в зависимости от того, замеры какого показателя осуществляются. Так, при определении постоянного тока его помещают в положение «DCA», а напряжения — «DCV», для переменных видов — «ACA» и «ACV» соответственно. Также переключатель позволяет осуществлять прозвонку, проверку диодов и сопротивления.

Подключение щупов осуществляется через разноцветные разъемы, имеющие различное буквенно-символьное обозначение. Провод красного цвета подключается к такому же разъему, имеющему надпись «VΩ». Разъем такого же цвета «EXT» предназначен для подключения измерителя изоляции. Провод нейтрального подключается к одноцветному разъему с символьным обозначением «СОМ».

Меры безопасности при работе

Взаимодействие с любыми приборами, контактирующими с электричеством, требует соблюдения некоторых мер безопасности. Не являются исключением и рассматриваемые клещи. Во время активных действий, проводимых ими, запрещается:

  • при их подключении к токоведущим элементам дотрагиваться до открытых разъемов;
  • при работе под напряжением измерять сопротивление;
  • переключать диапазоны при нахождении проводника в инструменте;
  • превышать максимумы перегрузочной способности инструмента для некоторого диапазона.

С профессиональным инструментом в электроустановках с напряжением выше 1000 В работу проводят 2 работника: 1 с III группой и 1 — с IV.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Пресс клещи для обжима наконечников проводов

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Что такое амперметр и как им проводить измерения?

Как пользоваться мегаомметром для измерения сопротивления изоляции кабеля?

Что такое петля фаза-ноль простым языком — методика проведения измерения

Токоизмерительные клещи

При работе с электрическими устройствами иногда возникает необходимость провести измерение силы тока. Известно правило о том, что для этого амперметр необходимо соединить последовательно.

  1. Определение
  2. Конструкция
  3. Принцип работы
  4. Инструкция по использованию
  5. Классификация
  6. Популярные виды
  7. Стрелочные приборы
  8. Цифровые клещи
  9. Совмещённые с мультиметром
  10. Высоковольтные токоизмерительные клещи
  11. Преимущества и недостатки
  12. Требования к клещам
  13. Проверка перед эксплуатацией
  14. Как выбрать клещи

Определение

Токоизмерительные клещи – позволяют узнать силу тока или другие характеристики без разрыва в электрической цепи. Этот инструмент работает по другому принципу – он определяет характеристики электрического тока на основании параметров магнитного поля.

Конструкция

В токоизмерительных клещах можно указать два основных рабочих узла:

Конструкция клещей

  1. В захватах находятся обмотки трансформатора.
  2. В ручке имеется амперметр или другой измерительный прибор.

В обмотках трансформатора наводится электрический ток, характеристики которого определяет встроенный измерительный прибор. Нужно учитывать, что наведённый ток имеет другую величину по сравнению с первоначальным. Для получения точной величины требуется выполнить пересчёт.

Принцип работы

Если между захватами клещей расположить проводник, то изменение тока, проходящего по нему окажет влияние на окружающее электромагнитное поле. Оно индуцирует в обмотках трансформатора ток. Затем он со вторичной обмотки будет измерен встроенным амперметром.

Важно отметить, что получаемое значение силы тока, хотя и соответствует проходящему по цепи, но не равно ему. Корректировка показаний амперметра происходит с учётом коэффициента измерения прибора.

В работе токоизмерительных клещей долгое время существовало важное ограничение — они были способны работать только с переменным током, ведь магнитное поле создаётся только в этом случае.

Были созданы более совершенные модели. Теперь с помощью токоизмерительных клещей имеется возможность работать не только с переменным, но и постоянным током. В настоящее время существуют модели, в которых присутствует мультиметр, который на основе полученных данных определяет нужные характеристики, не требуя пересчёта.

Современные модели токоизмерительных клещей способны решать следующие задачи:

  1. С их помощью возможно определить суммарную нагрузку электросети в квартире.
  2. Можно определить силу тока в конкретном проводнике, являющемся частью электрической цепи. Измерение можно проводить, не вмешиваясь в работу схемы.
  3. Можно определять мощность любого электроприбора в текущий момент времени. При необходимости возможно контролировать измерение этого параметра на протяжении нужного периода времени.
  4. Можно проконтролировать домашнюю электросеть на предмет подключения со стороны посторонних людей.
  5. Если имеется утечка тока на корпус прибора, то её можно определить с помощью этого инструмента.

Инструкция по использованию

Использование клещей для работы в ситуации, когда используется напряжение до 1000 Вольт ничем не отличается от тех, которые применяются в высоковольтных цепях. Далее будет рассмотрен порядок использования бытовых токоизмерительных клещей.

Использование рассматриваемого инструмента зависит от вида проводимых измерений. Обычно процедура выполняется следующим образом:

  1. Нужно в электрической схеме определить, с какого провода будут сниматься показания. Нужно помнить. Что если клещами обхватить не один, а большее количество проводов, то в результате будет получен неправильный результат.
  2. На тестирующем приборе требуется выставить нужный режим измерения. Его выбор зависит от поставленной задачи. При этом нужно будет определить не только вид измерения, но и необходимую шкалу. Если о ней не имеется информации, то выбирают самую большую.
  3. Клещи сначала нужно раскрыть, а затем обхватить проводник. Важно обеспечить перпендикулярность его расположения плоскости, в которой расположены клещи. Желательно, чтобы при этом проводник располагался в центре контура.
  4. Измерение произойдёт в автоматическом режиме. Результат можно будет увидеть на дисплее прибора.

Если ток имеет слишком маленькую величину и не получается его определить, то рекомендуется несколько раз его намотать на половинку клещей. В этом случае прибор измерит суммарный ток. Для получения нужной величины надо разделить это значение на количество сделанных витков.

Если на дисплее показана единица, значит ток превышает предельное значение этой величины. Чтобы точно определить искомую величину, нужно переключиться на больший диапазон.

Классификация

Такие клещи можно классифицировать по используемому в них электроизмерительному прибору. В этом качестве может применяться:

  • мегаомметры;
  • амперметры;
  • ваттметры;
  • фазометры;
  • ампервольтметры;
  • мультиметры.

Популярные виды

Этот прибор выпускается в различных вариантах. Далее рассказано об основных разновидностях токоизмерительных клещей.

Стрелочные приборы

Этот вариант исполнения токоизмерительных клещей представляет собой аналоговый прибор. В нём применяется одновитковая разновидность трансформатора. Такого рода модели были одними из первых вариантов этого измерительного прибора. Амперметр подключён к вторичной обмотке.

Стрелочные

Такие модели обеспечивают наглядность процесса измерения. Однако аналоговые модели излишне чувствительны к механическим колебаниям. В такой ситуации показания могут быть искажены. Чтобы этого избежать, токоизмерительные клещи необходимо во время измерения тока зафиксировать на жёсткой поверхности.

Нужно учитывать, что для получения нужных данных необходимо пересчитывать полученные данные с учётом коэффициента преобразования прибора. Токоизмерительные клещи такого типа выпускается с расчётом использования определённой частоты электрического тока.

Цифровые клещи

У этой разновидности результат измерений будет выведен на дисплей. Важным достоинством этого способа является то, что перед выводом цифры уже будут пересчитаны. Этот прибор можно настроить таким образом, чтобы отображать мощность или силу тока.

Цифровые

Совмещённые с мультиметром

Этот тип приборов удобен тем, что в него встроен мультиметр. Функциональность прибора определяется типом встроенного прибора. В таких моделях применяется датчик Холла, позволяющий проводить измерение параметров постоянного тока.

Токоизмерительных клещей на основе датчика Холла

Высоковольтные токоизмерительные клещи

Их определяющей особенностью является выполнение измерений в сетях с напряжением более 1000 Вольт. В этих устройствах применяется более сильная изоляция. Иногда при их использовании токовые клещи устанавливают на диэлектрической штанге. Это позволяет оператору избежать слишком близкого приближения к высоковольтным проводам. Такие клещи являются специализированными и используются только для работы с переменным током.

Высоковольтные токоизмерительные клещи

Преимущества и недостатки

При использовании токоизмерительных клещей можно отметить следующие достоинства:

  1. Компактность используемого инструмента и простота его использования.
  2. Имеется возможность использовать этот инструмент для проведения замеров в высоковольтных цепях. Для этой цели используются специализированные модели.
  3. Существуют различные разновидности таких устройств.

Такие клещи несложно интегрировать с радиоизмерительной аппаратурой.

При использовании можно столкнуться с такими недостатками:

  1. Поскольку при измерении используются характеристики создаваемого проводом магнитного поля, то при различном положении проводника результаты измерений могут отличаться. Чтобы избегнуть такой неоднозначности рекомендуется располагать провод перпендикулярно плоскости расположения клещей.
  2. Класс точности производимых измерений недостаточно высокий — второй или третий, в зависимости от конкретной модели.
  3. Иногда речь может идти о дополнительной наводке магнитного поля, создаваемой другими электроприборами. Чтобы этого избегнуть, необходимо контролировать их возможное наличие.
  4. Относительно простой принцип работы служит причиной изготовление некачественных вариантов таких инструментов.

Достоинства токоизмерительных клещей в значительной степени перевешивают их недостатки.

Требования к клещам

Необходимо использовать такой инструмент, который обеспечит нужный вид измерений и класс точности. Если есть необходимость в дополнительных опциях, то надо убедиться в их присутствии (например, будет лучше использовать дисплей большего размера). Важно убедиться, что приобретаемый экземпляр произведён известной фирмой, гарантирующей качество.

Проверка перед эксплуатацией

Для проверки достаточно произвести пробное измерение в соответствии с тем измерительным прибором, который встроен в клещи. Если результат соответствует предварительным данным — значит прибор исправен.

Как выбрать клещи

На рынке имеется много разновидностей токоизмерительных клещей, чтобы выбрать наиболее подходящий вариант. Необходимо обратить внимание на следующее:

  1. Исходить из своих потребностей. Нет смысла приобретать дорогой прибор с разнообразными возможностями, если в них нет необходимости.
  2. Учитывать, что обычно такие клещи приобретают для того, чтобы определять силу тока, его частоту или прозванивать провода.
  3. Убедиться в наличии полезных опций (возможность фиксировать результаты измерения нажатием кнопки, опция выставления ноля, автоматический выбор наиболее подходящего диапазона и другие).
  4. Важно учитывать качество материала, из которого сделан прибор.

Нужно, чтобы использовались элементы питания, которые несложно приобрести.

Как правильно работать токовыми клещами?

Узнайте, как правильно пользоваться токоизмерительными клещами. Порядок измерений и техника безопасности при работе инструментом.

Назначение большинства электроприборов известно многим людям: практически все знают, что измеряют вольтметром, а что амперметром. Мало у кого возникнет вопрос: «Для чего нужен паяльник?» Однако, даже не у каждого электрика в инструментарии есть токовые клещи. Этот инструмент является очень полезным и способен сильно сократить время электротехнических работ. Дополнительно этот прибор можно использовать для измерения напряжения и частоты тока в цепи. С его помощью также можно измерить мощность в цепи, фактическую нагрузку в сети и даже осуществить проверку электросчетчиков, например, сверку показаний с фактическим потреблением. В этой статье описывается принцип работы инструмента и рассказывается как пользоваться токоизмерительными клещами (ТК) на примере моделей DT 266 FT и Fluke. Эта инструкция будет применима практически ко всем подобным устройствам. Содержание:

  • Принцип работы
  • Конструкция
  • Правила безопасности при работе
  • Порядок измерений
  • Полезная «хитрость»
  • Пример использования

Принцип работы

Как следует из названия ТК или клещи Дитце предназначены для измерения силы переменного тока в цепи без ее разрыва. В основе работы токоизмерительного инструмента лежит принцип простейшего трансформатора тока. В этом случае первичной обмоткой является шина или кабель с измеряемым током, а роль вторичной играет захват клещей, внутри которого расположена вторая многовитковая обмотка, намотанная на магнитопровод из ферромагнитного материала. Переменный ток в проводе (первичной катушке) создает переменное магнитное моле, силовые линии которого проходят через вторичную обмотку, возбуждая в ней ЭДС, пропорционально величине тока в первой катушке. Таким образом, измеряя возникающую ЭДС, можно найти силу тока в первой катушке (проводе).

Конструкция

Современные токоизмерительные клещи вне зависимости от производителя и модификации содержат следующие элементы: магнитопроводы с подвижной скобой-рычагом, переключатель диапазонов измерений, экран, выходные разъемы для щупов (в этом случае клещи могут быть использованы как обычный мультиметр) и кнопку фиксации токовых измерений (фото ниже).

Рисунок 1 – ТК S-line DT 266 FT

Большинство современных токовых измерителей также включают в себя внутренний трансформатор с диодным мостом. В этом случае выводы вторичной обмотки подключаются через шунт. В зависимости от диапазона измеряемых сил токов, токовые клещи могут быть одноручными (для напряжений до 1000 В) и двуручными с дополнительными изолированными ручками (для напряжений от 2 до 10 кВ включительно). Токоизмерительные устройства, предназначенные для измерений более 1 кВ, имеют длину изолятора на менее 38 см, а рукояток – не менее 13 см.

Как правило, на корпусе прибора указывается категория безопасности и максимальный измеряемый ток. Например:

  • CAT III 600 V – это означает, что прибор защищен от кратковременных бросков напряжения внутри оборудования при эксплуатации в стационарных сетях с напряжением до 600 В.
  • CATIV 300 V – это означает, что прибор защищен от бросков напряжения внутри оборудования первичного уровня электроснабжения напряжением до 300 В. Примером такого оборудования может служить обычный электрический счетчик.

Правила безопасности при работе

Токоизмерительные клещи разрешается использовать только в закрытых помещениях или на открытых пространствах в сухую погоду. Измерять силу тока можно как на кабелях, покрытых изоляцией, так и на оголенных. Перед использованием человеку необходимо надеть защитные перчатки, а под ноги подложить диэлектрическое основание и надеть специальные ботинки.

Порядок измерений

Как правило, использование токоизмерительных клещей не вызывает особых трудностей. Перед тем, как пользоваться инструментом, стоит уделить большое внимание технике безопасности, о чем было сказано ранее.

Как правильно пользоваться токоизмерительными клещами:

  1. Установить требуемый диапазон на переключателе.
  2. Нажать на кнопку раскрытия магнитопровода.
  3. Обхватить одиночный проводник в сети переменного или постоянного тока (если такая возможность поддерживается прибором).
  4. Расположить токовые клещи перпендикулярно направлению провода.
  5. Снять показания с дисплея.

Часто трудность использования токоизмерительных клещей заключается в выделении одиночного проводника: при попытке снять показания с обычного кабеля, идущего из розетки, на экране должен высветиться ноль. Это происходит потому, что токи фазного провода и нулевого проводника равны по величине и противоположны по направлению. Следовательно, магнитные потоки, создаваемые ими взаимно компенсируются. Если же токовые показания отличны от нуля, то это свидетельствует о наличии утечки тока в цепи, величина которой равна полученному значению. Поэтому для измерений нужно найти место, где провода разделяются и выделить одиночную жилу. В качестве такого места можно использовать распределительный щит или место подключения фазового провода к автоматическому выключателю. Тем не менее это не всегда можно сделать, что ограничивает область применения токоизмерительных клещей.

Если в процессе измерений на экране высвечивается единица, то это говорит о том, что значение силы тока в проводе находится за пределами диапазона измерений. В этом случае необходимо увеличить диапазон токовых измерений с помощью переключателя. При проведении измерений в труднодоступных местах можно использовать кнопку Hold. С ее помощью можно зафиксировать результат последнего измерения и посмотреть его, убрав клещи. Нажав на Hold второй раз, можно сбросить значение.

Наглядно увидеть, как работать токоизмерительными клещами, Вы можете на видео инструкции ниже:

Правильное использование инструмента

Полезная «хитрость»

Если требуется измерить малое значение силы тока, то необходимо сделать несколько витков провода на разомкнутом магнитопроводе, а переключатель диапазонов установить на минимум. После этого необходимо снять показания, а для определения фактического значения разделить полученное число на количество намотанных витков.

Пример использования

Приведем пример того, как пользоваться токоизмерительными клещами при измерении нагрузки в сети 220 В, например в квартире. В этом случае переключатель необходимо установить в положение AC 200. Далее необходимо токовыми клещами обхватить изолированный проводник и снять показания. После этого полученную величину силы тока нужно умножить на напряжение в сети 220 В. Например, если прибор показывает 5 А, то потребляемая мощность в сети составит P = U * I = 5 * 220 = 1100 Вт или 1.1 кВт. Полученное значение можно использовать для проверки работы приборов учета электроэнергии.

Напоследок предлагаем просмотреть видео, на котором наглядно показывается, как пользоваться токовыми клещами DT-266 и Fluke 302+, достаточно популярными на сегодняшний день:


Вот и вся инструкция о том, как самому пользоваться токоизмерительными клещами. Как Вы видите, ничего сложного нет. Главное — соблюдать меры безопасности и внимательно подходить к измерениям. Надеемся, что наши советы и наглядная видео инструкция доступно объяснили Вам порядок действий!

Будет интересно прочитать:

  • Как использовать мультиметр – инструкция для чайников
  • Как проверить правильность работы счетчика электроэнергии
  • Список инструментов электрика

Правильное использование инструмента



Токарные станки –классификация, основные типы, техника безопасности

Используя токарный станок одной из современных моделей, можно выполнять достаточно большой перечень технологических операций по обработке металла. Но преимущественно на таком оборудовании выполняют обработку наружных и внутренних поверхностей заготовок, имеющих цилиндрическую, коническую и фасонную конфигурацию.

Современный токарный станок

История появления и развития оборудования

По мнению историков, токарные станки (вернее, примитивные прародители подобных устройств) были изобретены и начали использоваться человеком еще в середине VII века до нашей эры. Конечно, такое устройство имело простейшую конструкцию, но позволяло эффективно выполнять обработку изделий из дерева или кости. Для того чтобы произвести такую обработку, в двух центрах, которые монтировались соосно друг с другом, зажималась деталь. Ее вращали вручную, а процесс резания осуществлялся при помощи ручного резца, которым манипулировал отдельный «оператор». Таким образом изделию придавалась требуемая форма и размеры.

Следующим этапом развития, которому подверглось оборудование токарной группы, стало оснащение его приводом, необходимым для придания детали вращательного движения. В качестве такого привода изначально использовалась тетива лука, которую петлей накидывали на обрабатываемое изделие. А чуть позже (в XIV столетии) был изобретен ножной привод для токарного оборудования.

Старинный токарный станок с ножным приводом

Конструкция такого привода, очень напоминающего приводной механизм ножной швейной машины, состояла из закрепленной консольной деревянной жерди, соединенной с обрабатываемой деталью при помощи прочной веревки. При нажатии ногой на жердь веревка натягивалась, что приводило к вращению заготовки на 1–2 оборота. После того как нога убиралась с жерди, веревка освобождалась и устремлялась вверх, что влекло за собой вращение заготовки в другую сторону.

Несмотря на простую конструкцию, такие токарные станки уже позволяли выполнять обработку с достаточно высоким качеством. Их плюсом являлось и то, что обслуживание устройств было очень простым.

Токарно-копировальный станок А. Нартова, 1729 год

Станок токарной группы XVI столетия уже имел в своей конструкции люнет и центры, изготовленные из металла, что позволяло использовать его для обработки заготовок, отличающихся сложной конфигурацией. Однако по причине невысокой мощности такого устройства применять его для токарной обработки металлических заготовок было еще нельзя.

Сильный толчок история токарного станка получила в 1700-х годах, когда россиянином Андреем Нартовым было создано устройство, на которое установили механический суппорт. Следует отметить, что именно это новшество послужило сильнейшим толчком в развитии всего оборудования, предназначенного для обработки заготовок из металла. Серьезный вклад в развитие токарных агрегатов внесли французские инженеры, которые к середине XVIII столетия создали устройство, отличающееся высокой универсальностью. Уже к концу этого века во французской промышленности стал использоваться специализированный агрегат, на котором можно было выполнять нарезание резьбы на металлических винтах.

Токарные станки Модсли (нажмите, чтобы увеличить)

По-настоящему прорывным в развитии токарного оборудования принято считать 1794-й год, когда Генри Модсли создал станок, послуживший базой для дальнейшего развития всех токарных агрегатов. Что примечательно, предприятие, основанное Модсли, занималось также производством плашек и метчиков, с помощью которых на его оборудовании выполняли нарезание резьбы.

О том, чтобы автоматизировать токарный станок, стали задумываться в XIX веке, и пальма первенства в этом вопросе принадлежит американским инженерам. Данный процесс шел по пути оснащения агрегатов дополнительными элементами автоматизации, что в итоге привело к созданию первого станка с револьверной головкой. Именно на базе таких устройств в дальнейшем и стали создавать универсальные станки-автоматы, первый из которых (станок Спенсера) был представлен общественности в 1973 году.

Классификация токарного оборудования

Классификация токарных станков, которая была разработана еще в советское время, причисляет такие агрегаты к первой категории оборудования, предназначенного для обработки заготовок из металла. Согласно данной классификации, все виды токарных станков причисляются к одной из следующих категорий:

  • автоматические и полуавтоматические токарные агрегаты с одним шпинделем;
  • многошпиндельные станки: автомат и полуавтомат;
  • револьверные модели;
  • станки отрезной группы;
  • карусельные модели;
  • лобовое и винторезное оборудование;
  • многорезцовые и полировальные агрегаты;
  • специализированные станки, которые могут быть обычными и автоматическими;
  • устройства специального назначения.

Основные виды токарных работ

По степени точности обработки производятся следующие типы токарных станков:

  • особой точности — С;
  • высокой точности — В;
  • нормальной точности — Н;
  • особо высокой точности — А;
  • повышенной точности — П.

От того, к какой категории принадлежит токарный станок, зависят его функциональные возможности, и, соответственно, сфера применения. Узнать об основных технических возможностях станка можно и по его маркировке, которая включает в себя следующее:

  • начальную цифру «1», свидетельствующую, что это именно токарный станок, а не какой-либо другой;
  • вторую цифру, указывающую на тип, к которому относится токарный агрегат;
  • третью цифру (а в некоторых моделях и четвертую) — это самый основной параметр станка, который характеризует высоту его центров.

Расшифровка маркировки токарных станков (нажмите, чтобы увеличить)

Присутствуют в маркировке таких агрегатов и буквенные обозначения, которые определяют его конструктивные особенности: уровень его автоматизации, точности, модификацию, оснащенность системой ЧПУ. К примеру, маркировка модели токарного станка 1И611П расшифровывается следующим образом: буква «И» говорит о том, что это устройство токарно-винторезной группы; буква «П» — станок повышенной точности; высота центров у данной модели соответствует значению 110 мм. Догадаться о том, какой категории перед вами токарный станок, можно и по фото модели.

Типы токарного оборудования

Токарно-револьверные станки предназначены для изделий, обрабатывать у которых необходимо несколько поверхностей, используя различные инструменты. Чтобы не выполнять установку и настройку каждого инструмента, на таких станках устанавливаются револьверные головки, в которых может быть предусмотрено два и более гнезда для размещения инструментов. Конечно, обслуживать такой токарный станок значительно сложнее, чем обычную модель, но это полностью компенсируется функциональностью этого агрегата. К примеру, популярными моделями подобных станков являются 1Е316П, 1Г340ПЦ, 1П371, 1А341.

Карусельный станок — одна из разновидностей станков токарной группы

Карусельные станки токарной группы предназначены для выполнения обработки заготовок, характеризующихся небольшой длиной, значительной массой, большим внешним диаметром. К ним относятся габаритные зубчатые колеса, маховики и др. Функциональные возможности таких токарных станков (например, моделей 1512, 1541, 1550, 1Л532 и прочих) позволяют выполнять на них различные виды токарных работ: точение, растачивание, прорезывание канавок, обработку торцов и др. А если дооснастить такие токарные агрегаты дополнительными приспособлениями, то они станут еще более универсальными: с их помощью можно будет выполнять некоторые фрезерные операции, нарезать резьбу, осуществлять шлифовку и производить ряд других технологических действий.

Рабочие органы многошпиндельного станка

Многошпиндельные станки, относящиеся к токарной группе, необходимы для выполнения сложнейших технологических операций в условиях серийного производства. Заготовки, которые можно обрабатывать на таких станках, могут иметь форму труб, шестигранных, квадратных и круглых прутков, фасонного профиля и др. Отличается подобная техника высокой жесткостью своей конструкции и мощным приводом, что позволяет выполнять с ее помощью обработку с высокой производительностью.

Что важно, такая сложная и функциональная техника обслуживается точно так же, как и станок обычной модели. Перечень технологических операций, которые можно выполнять на подобном агрегате, достаточно обширен: растачивание, черновое и фасонное обтачивание, нарезание и накатывание резьбы и др. Наиболее популярными моделями подобного токарного оборудования являются станки 1П365 и 1Б140.

Токарно-винторезный станок 16К20

Распространенными моделями станков для токарной обработки, которые завоевали широкую популярность еще во времена СССР, являются токарно-винторезные устройства. Свою популярность такие станки, которые можно встретить не только практически на любом промышленном предприятии, но и в школьных мастерских, завоевали благодаря тому, что с их помощью можно эффективно выполнять большой перечень технологических операций.

Каждый такой станок, вне зависимости от модели, имеет типовую конструкцию, состоящую из однотипных узлов. Наряду со своей функциональностью, токарно-винторезные модели токарных станков отличаются высокой безопасностью, простотой в работе и обслуживании, что и дает возможность использовать их в качестве агрегатов для оснащения школьных мастерских еще со времен СССР. Наиболее известными и популярными моделями такого токарного оборудования являются станки 16К20, 16К50, 16Б16А и 16П16П.

На предприятиях, выпускающих свою продукцию крупными сериями и использующими в производстве заготовки из фасонных профилей и калиброванных прутков, активно применяются токарные автоматы. Такие станки, на которых преимущественно выполняют операции точения в продольном направлении, с одинаковым успехом справляются с обработкой заготовок из различных металлов: сверхтвердых сплавов, мягкой меди и др.

На отечественном рынке токарные станки представлены в основном моделями зарубежных производителей (Япония, Южная Корея и др.). Есть и отдельные модели отечественного производства, например 1М10ДА.

Токарно-продольный автомат 1М10ДА

Особенности конструкции станков токарной группы

Все станки, предназначенные для выполнения токарной обработки заготовок из металла и других материалов, имеют в своей конструкции типовые конструктивные элементы:

  • станину — несущий элемент токарного агрегата, на котором устанавливаются все элементы его конструкции;
  • фартук (в данном элементе токарного станка происходит преобразование движения валика или ходового винта в перемещение его суппорта);
  • шпиндельную бабку, на которой размещается шпиндель устройства, а в ее внутренней части располагается коробка скоростей;
  • суппорт (в данном элементе станка закрепляется режущий инструмент, также суппорт нужен для того, чтобы обеспечить продольную и поперечную подачу инструмента, совершаемую с заданными параметрами; в конструкции суппорта обязательно присутствует нижняя каретка, а у отдельных моделей их несколько, на верхней из которых крепится держатель для токарного инструмента);
  • коробку подач (при помощи данного конструктивного элемента передается движение от ходового винта или валика на суппорт станка);
  • электрическая часть конструкции станка, включающая в себя приводной электродвигатель, мощность которого у разных моделей станков может серьезно варьироваться, а также элементы, с помощью которых обеспечивается управление электрооборудованием устройства (естественно, данная часть токарного агрегата должна отвечать требованиям безопасности).

Основные узлы токарного станка

Все элементы конструкции станка опираются на две тумбы, которые выполняют несущую функцию, а также обеспечивают размещение заготовки на удобной для оператора высоте. Такие тумбы, отличающиеся массивностью своей конструкции, можно увидеть на фото токарного станка любой модели.

Основная часть конструктивных элементов токарного оборудования унифицирована, что позволяет оперативно и с минимальными затратами выполнять их техническое обслуживание и ремонт.

Конструкция суппорта токарного станка

Приводные валы станка

Пример расположения органов управления токарного станка (нажмите, чтобы увеличить)

Токарный станок по дереву

Красиво обработанная деталь из дерева всегда считалась хорошим дополнением любого интерьера. Для проведения таких работ используют токарный станок по дереву. Такой деревообрабатывающий станок позволяет производить большое количество операций с применением различных режущих инструментов. По своей конструкции он имеет много общего с агрегатами для обработки металла. Однако у агрегата для изготовления деталей из дерева существуют определённые отличия. Они определяются особенностями каждой модели. Чтобы в полном объёме использовать все его функциональные возможности необходимо понимать его конструкцию и способы применения.

Устройство деревообрабатывающего токарного станка

Конструктивно различные типы таких агрегатов для обработки изделий из дерева построены из элементов, имеющих одинаковое функциональное назначение. Независимо от принадлежности к категории схема токарного станка включает следующие элементы:

  • массивную станину (на ней располагаются основные узлы);
  • переднюю бабку с закреплённым шпинделем;
  • заднюю бабку с элементами фиксации заготовки;
  • суппорт, служащий для подачи обрабатывающего инструмента;
  • привод передачи вращения;
  • двигатель;
  • система управления скоростью вращения (выполняется дискретным с несколькими скоростями вращения);
  • элементы схемы электрооборудования;
  • органы ручного управления (обычно они реализованы с помощью различной формы рукояток, маховиков, электрических кнопок или переключателей);
  • средства защиты от пыли и опилок;
  • отдельные станки снабжаются специальной системой защиты при возникновении аварийной ситуации;
  • фартук;
  • наиболее совершенные аппараты оснащаются мощным пылесосом для удаления отходов древесины.

Несмотря на единообразие элементов, каждый производитель предлагает своё устройство токарного станка по дереву, с применением своих технических решений. Станина изготавливается из чугуна или стали и имеет большой вес, что позволяет стабилизировать вращение двигателя и всех вращающихся деталей. На ней крепятся все основные узлы.

Любая бабка токарного станка в том числе и для работы по дереву выполнена по стандартной схеме. Она имеет:

  • шпиндель, оснащённый системой крепления обрабатываемой заготовки;
  • несколько подшипников (в состав включены три подшипника: упорный, передний и задний);
  • специальные регулировочные гайки;
  • муфта для переключения.

Вторым элементом является задняя бабка токарного станка. Она обладает двумя степенями свободы. Такая особенность позволяет изменять положение заготовки в горизонтальном и вертикальном направлении. Данная система крепления обеспечивает качественную обработку деталей самой сложной формы. Для увеличения жёсткости крепления заготовки в токарных станках применяется пиноль. Она изготовлена в форме гильзы, перемещается вдоль главной оси.

На суппорт токарного станка возложены две функции:

  • фиксация инструмента из имеющегося в комплекте;
  • перемещение в заданных плоскостях для обработки.

Суппорт расположен на станине. Он снабжён двумя видами салазок (поперечными верхними и продольными, которые называются кареткой). Для осуществления разворота он имеет поворотную систему. Вся система изменение положения суппорта называется приводом подач. Связь суппорта со шпинделем осуществляется через реверсивное устройство, называемое трензель.

Вращение деталей токарного станка осуществляется с помощью ременной передачи, которая служит передаточным элементом от электрического двигателя к передней бабке. Эти элементы составляют привод главного движения. Для каждой конструкции производитель предлагает своё количества переключение скоростей вращения шпинделя. В основной массе станков диапазон скоростей вращения деталей варьируется от 200 об/мин до 1000 об/мин.

Элементы электрической схемы расположены в отдельном блоке. Благодаря происходит распределение управляющих сигналов на все устройства станка. Блок состоящий из электрических элементов, находящихся под напряжением относится к первому классу защиты.

Часть элементов суппорта имеет ручное управление. Салазки сделаны универсальными. С их помощью можно закрепить ещё один резец.

Фартук станка преобразовывает вращательное движение в поступательное. Кроме этого он обеспечивает синхронное вращение ходового валика суппорта и ходового винта. Предусмотренная система механической защиты предотвращает одновременное включение этих валов. Плавное переключение подач обеспечивается с помощью маточной гайки.

Для защиты от возможных перегрузок в фартуке станка предусмотрен подвижный механизм падающего червяка. Такие перегрузки возникают в результате увеличения внешнего давления на поверхность заготовки, особенно при использовании ручного инструмента. Такой эффект наблюдается при резком снижении скорости вращения заготовки, замедлении движения режущего инструмента. Особенно это свойственно станкам на которых производится ручная обработка заготовки.

Большое значение на качество обработки дерева влияет заданная скорость вращения заготовки. Для этого в станке предусмотрена коробка скоростей. Она позволяет выбирать величину крутящего момента в зависимости от типа дерева и выполняемой операции.

Принцип работы

В основу всех токарных агрегатов, в том числе и по дереву заложен один способ обработки. Воздействие на поверхность деревянной заготовки режущим инструментом. Принцип работы токарного станка для обработки заготовок из дерева отличается только тем, что режущий инструмент может подаваться автоматически или вручную. Техника ручной подачи зависит от характера древесины, применяемого режущего инструмента и сложности конфигурации будущего изделия. Перед началом работ заготовка крепится в специальных устройствах между передней и задней бабкой. В качестве инструмента, для заготовок из дерева могут применяться специальные резцы или стамески различного профиля. Они могут быть плоские или фигурные. Благодаря форме режущей кромки можно вырезать любые поверхности. Для этого их затачивают в одной или нескольких плоскостях. Основным критерием, на основании которого производится классификация резцов – это форма и тип заготовки.

При необходимости применяют специализированные стамески:

  • рейер (она имеет полукруглое лезвие, с помощью которого производят предварительную обработку);
  • мейсель (предназначена для окончательной, то есть чистовой обработки, вытачивания углублений и различных канавок);
  • стамеску-крючок (служит для вытачивания различных углублений);
  • стамеска-гребёнка (с её помощью нарезают резьбу и изготавливают деревянные метизы);
  • скребок (применяется для выравнивания цилиндрических заготовок).

Работать такими стамесками следует вручную, что позволяет реализовать любые идеи мастера. Для получения качественной поверхности необходимо точно задать скорость вращения заготовки и определить угол подачи инструмента и силу нажима.

Назначение и характеристики токарного станка

Современные производители предлагают токарное оборудование, способное выполнять многие обрабатывающие операции. В зависимости от их перечня определяется назначение агрегата. К основным характеристикам станков для обработки древесины относятся:

  • мощность установленного двигателя;
  • вес всего станка;
  • размеры;
  • перечень допустимого режущего инструмента;
  • количество возможных операций обработки;
  • максимальный размер обрабатываемой детали;
  • наличие средств автоматизации и программного управления.

Каждый из типов станков обеспечивает определённую отрасль промышленности. При необходимости изготовления большого числа однотипных деталей из дерева, их производство возлагается на специализированные токарные автоматы и станки с числовым программным управлением.

Виды токарных станков

Современные производители предлагают большое количество типов деревообрабатывающего оборудования. Их классификация определяет область применения и технические возможности каждого образца. Все виды токарных станков подразделяются по следующим показателям:

  • область применения;
  • производительность;
  • количество выполняемых операций;
  • допустимые размеры деталей.

Сфера применения подразделяется на категории:

  • промышленные станки или обрабатывающие центры;
  • полупрофессиональное оборудование;
  • бытовые токарные станки.

В каждую из них входит несколько моделей таких устройств. Каждый из них служит для решения конкретных практических задач. Все токарные станки подразделяются на профессиональные, полупрофессиональные и бытовые. Каждый из них служит для решения определённого класса задач при изготовлении деревянных деталей. Любой стационарный станок требует больших площадей для установки и доступа к мощным высоковольтным сетям. Особый класс имеют компактные агрегаты, которые можно расположить на рабочем столе или верстаке. Настольный станок очень удобен для обработки деталей малых размеров в небольшом количестве или изготовлении эксклюзивной детали.

Каждый из станков конкретного типа обладает своей производительностью. Это зависит от допустимой скорости обработки и наличия современных средств механизации или полной замене ручного управления на автоматическое. Подобные агрегаты снабжены числовым программным управлением. Они обладают наивысшей производительностью и большим количеством выполняемых операций. Такие станки в основном входят в группу промышленного оборудования. Они обладают большим весом (некоторые из них весят более 200 кг). Мощность двигателей, расположенных на таких агрегатах достигает 1 кВт. Количество выполняемых операций зависит от конструктивных особенностей, определяющих возможности по креплению необходимого режущего инструмента. Для выполнения запланированного числа операций применяют станки с ЧПУ

Полупрофессиональные токарные станки применяются для обработки небольших партий деревянных заготовок. Они значительно легче профессиональных агрегатов. Его вес не превышает 90 кг. Мощность установленного двигателя равна 0,5 кВт.

Наибольший интерес для домашних мастеров представляет настольный станок. Его применение ограничивается возможностями по размещению, доступностью источника электроэнергии и габаритами будущих поделок. Он обладают малым весом, который не превышает сорока килограмм. На них устанавливают двигатели небольшой мощности, менее 0,5 кВт. Каждый из этих станков способен проводить широкий перечень обрабатывающих процедур. Они подразделяется по типам таких операций: только фрезерные, копировально-фрезерные, рейсмусовые, винтовые, чисто токарные, комбинированные (для выполнения нескольких типов операций, станки снабжаются устройствами автоматики, запрограммированными на последовательность требуемых операций.

Как выбрать токарный станок по дереву

Среди многообразия видов токарных станков по дереву достаточно сложно сделать правильный выбор. Будущий владелец должен определиться с перечнем задач (набором производимых операций), которые должен выполнять агрегат. Чтобы не приобрести ненужный агрегат следует определиться со следующими требованиями:

  • какие задачи планируется решать с помощью выбираемого станка;
  • как часто его планируется использовать;
  • где он будет установлен;
  • какие возможности имеются по энергоснабжению.

Предлагаемые модели токарных станков способны реализовать самые строгие требования будущего владельца.

При рассмотрении первого требования следует понять, для чего выбираемый агрегат необходим. Если планируется проведение большого количества обрабатывающих операций, в том числе с деталями из дерева крупных размеров следует остановить свой выбор на устройствах промышленной или полупромышленной группы.

Следует помнить, что работы на таком оборудовании потребуется достаточно большая площадь для его размещения и мощная электрическая сеть, так как все они снабжены энергоёмкими двигателями. Большое значение играет марка выбираемого агрегата. Она может служить гарантией качества и надёжности.

Для обработки изделий из дерева в домашней мастерской свой выбор останавливают на настольных станках. Такие станки легко устанавливаются в гараже, небольшой мастерской, на даче загородном доме. Они будут выполнять практически те же функции, но занимают меньше места, имеют относительно небольшой вес и не потреблять большое количество электроэнергии. Станки этого типа применяют для обработки и изготовления деталей из дерева небольших размеров в ограниченном количестве. Домашний станок обладает ещё одним существенным преимуществом – приемлемой ценой. Однако многие токарные агрегаты из этой группы имеют широкие функциональные возможности по работе с деревом и часто не уступают полупрофессиональным агрегатам. Для них может быть приобретено или разработано приспособление, способствующее увеличению его производительности и качества обрабатываемой поверхности. В этом случае они способны обрабатывать цилиндрическую, конусообразную или фасонную поверхность.

Токарный станок по дереву: как превратить хобби в профессию

Токарное ремесло — одно из самых древних русских ремесел. В древности, когда токарных станков не было, мастера-умельцы вытачивали настоящие деревянные шедевры из подручных материалов. Хорошие токари ценились испокон веков. В те времена, когда камень был большой редкостью, большинство предметов быта, а также большинство декоративных деталей (наличники, фризы, фронтоны) для домов и церквей делались вручную. Слово «токарь» произошло от древнерусского слова «точить» — «обрабатывать древесину». Во многих крупных городах были целые слободы (выражаясь современным языком, «микрорайоны»), где проживали токари — мастера, которые вытачивали из дерева изделия различного назначения.

  • Виды токарных станков
  • Особенности работы на самодельном токарном станке
  • Что можно изготовить из дерева
  • Как превратить хобби в профессию

Виды токарных станков

Многие токари были еще и искусными резчиками по дереву. Ремесло токаря считалось почетным. Это отразилось и в современном русском языке: фамилия «Токарев» до сих пор является одной из самых распространенных фамилий славянского происхождения наравне с такими «профессиональными» фамилиями, как Кузнецов, Бортник (пчеловод), Золотарев (золотых дел мастер).

Профессия токаря до сих пор является одной из самых востребованных. Для того чтобы освоить современные технологии древнего ремесла, можно приобрести токарный станок или изготовить его самостоятельно.

Станки бывают нескольких видов:

  • Стационарные станки больших размеров, которые стоят в заводских цехах, на заводах деревообрабатывающей промышленности. Для того чтобы работать на таком станке, требуется как минимум среднее специальное образование по специальности «токарь»;
  • Стационарные станки промышленного производства, которые можно использовать в домашних условиях, не имея специального образования. Как правило, такие станки устанавливают в гараже, подвальном помещении, сарае или в мастерской частного дома;
  • Самодельные устройства. Они могут быть разных габаритов, в зависимости от того, чем именно занимается токарь;
  • Мини-станки промышленного производства. Это, пожалуй, идеальный вариант для начинающего токаря или для первокурсника профессионально-технического училища, который хочет «наработать» практику. Мини-станки могут иметь как ручное, так и автоматическое управление. Начинающим мастерам, а также тем, кто точит однотипные детали, рекомендуется приобретать автоматический вариант. А опытным токарям, которые творчески подходят к своему ремеслу и вытачивают детали самой разной формы и различных размеров, больше подойдет вариант с ручным управлением. Работать на ручном станке гораздо сложнее, но и интереснее, чем на автоматическом.

Особенности работы на самодельном токарном станке

Многие домашние умельцы с большим опытом изготавливают такие устройства самостоятельно. Это неплохой вариант для тех, кто хорошо разбирается в токарном деле. Конечно, сложные детали на самодельном токарном станке выточить не получится, но самые примитивные заготовки простейших геометрических форм можно изготовить без особых затруднений. На самодельном токарном устройстве можно выточить детали такой формы, как:

  • Шар;
  • Цилиндр;
  • Конус;
  • Куб;
  • Призма;
  • Призма с усеченной верхушкой.

Во время работы на таком устройстве нужно уделять особое внимание технике безопасности. Если станок изготовлен неправильно, можно легко получить травму. Подробности о технике безопасности во время работы на самодельном станке можно прочитать в учебных пособиях для учащихся профессионально-технических училищ.

Что можно изготовить из дерева

С помощью токарного станка можно изготовить самые разные виды изделий:

  • Багет. В переводе с французского языка слово «багет» означает «палка». Так называют плоские деревянные планки различной длины, из которых делают простейшие рамы для картин и фотографий. Изготовление багета для художественных магазинов может стать выгодной профессией;
  • Разделочные доски, разные по форме, размерам и толщине. Лучше всего делать их из твердых пород дерева (ель, береза, дуб);
  • Деревянная посуда: миски, чашки, солонки и небольшие емкости для специй;
  • Деревянные куклы. Это могут быть как куклы из нескольких деталей на шарнирах (наподобие Буратино или Пиноккио), так и куклы из цельного куска дерева, какими играли в старину крестьянские девочки;
  • Куклы-матрешки;
  • Детские кубики;
  • Пирамидки для детей младшего возраста, состоящие из длинного стержня и нескольких колец, которые нанизываются на стержень в порядке уменьшения размеров. Можно также изготовить аналогичную развивающую игрушку, состоящую из нескольких круглых мисок (чашек), которые вкладываются одна в другую;
  • Деревянные ложки;
  • Шкатулки и ларцы разной формы;
  • Заготовки для брошей, бус, браслетов и других разновидностей деревянной бижутерии.

Для создания изделий небольших размеров из приведенного выше списка прекрасно подойдет мини-станок промышленного производства. Однако для изготовления более крупных вещей (например, деревянных рам для окон, наличников, декоративных карнизов для частных домов) понадобится стационарный станок, домашний или заводской. Начинать лучше всего с мини-станка и с самых простых изделий. Мини-станок обладает небольшим весом, и его легко можно переносить с места на место. Работать можно дома, оборудовав под мастерскую отдельную, хорошо проветриваемую комнату. Мини-станки не создают много шума во время работы и не берут много электроэнергии, главное правильно настроить мощность.

Как превратить хобби в профессию

Многие токари-любители превратили свое хобби в выгодное ремесло. В настоящее время многие народные ремесла переживают второе рождение. В связи с возрастающей популярностью так называемого «экостиля», когда в дизайне интерьера используются только натуральные материалы, авторские изделия из дерева (посуда, игрушки, бижутерия) пользуются огромным спросом.

Для того чтобы сделать хобби профессией, нужно действовать следующим образом:

  • Изучить специализированную литературу, посвященную базовым навыкам токарного ремесла;
  • Приобрести простейшую модель мини и освоить работу на этом станке;
  • Научиться вытачивать простейшие геометрические формы;
  • Определиться с дальнейшим направлением деятельности (багет, посуда и кухонная утварь, игрушки, бижутерия);
  • Совершенствовать свои профессиональные навыки в выбранном направлении;
  • Освоить базовые навыки декорирования готовых изделий (резьба по дереву, выжигание, гравировка по дереву или роспись специальными красками);
  • Сфотографировать собственные изделия и разместить их на собственной страничке в сети, указав стоимость изделий и свои контактные данные;
  • Активно продвигать свое творчество, участвуя в ярмарках ремесел, выставках в Домах Культуры и Домах Народного Творчества.

Если действовать, строго придерживаясь данной маркетинговой стратегии, можно получать неплохую прибыль от продажи деревянных изделий ручной работы, изготовленных в домашних условиях на мобильном устройстве.

Древесину лучше всего заготавливать самостоятельно или приобретать у надежного, хорошо знакомого поставщика. Также можно закупать древесину оптом в леспромхозах и на предприятиях деревообрабатывающей промышленности. Если изделия отличаются оригинальностью и качественно выполнены, они вскоре начнут пользоваться спросом.

Работа на токарном станке в домашних условиях — это вполне реально и не так сложно, как кажется. Главное приобрести для работы качественное оборудование и выбрать хорошее сырье. Освоить азы токарного ремесла под силу любому мужчине. Однако иногда на токарном станке работают и прекрасные дамы, подчас не уступая мужчинам в скорости работы и качестве готовых изделий. Качественные поделки из дерева всегда будут хорошо продаваться, потому что дерево — один из самых прочных и безопасных материалов, используемых в быту.

Читайте также:
Трубы ПВХ для внутренней и наружной канализации
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: