Что такое вихревые токи?

Реферат По предмету «Физика» Тема: «Токи Фуко и их применение»

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.


Токи Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.


Определение из учебного пособия



Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.


Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.


Нагревание как одно из свойств

Природа вихревых токов


Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.
Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Вам это будет интересно Как работать с термоусадочной трубкой


Определение в трансформаторе

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Читайте также:
Современные жалюзи и шторы на кухню

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.


Применение в проводниках

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку — проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита. Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Нужен совет преподавателя по схожей теме? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева. Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления. Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Способы уменьшения блуждающих токов

Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.

Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.

Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.

В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.

Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.


Уменьшение токовой силы

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Читайте также:
Чердачное окно своими руками: как сделать, виды, как выбрать

Вихревые токи Фуко — причины возникновения и применение

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Природа вихревых токов

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.

Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Литература

  • Сивухин Д. В.: Общий курс физики, том 3. Электричество. 1977
  • Савельев И. В.: Курс общей физики, том 2. Электричество. 1970
  • Неразрушающий контроль: справочник: В 7т. Под общ. ред. В. В. Клюева. Т. 2: В 2 кн.-М.:Машиностроение, 2003.-688 с.: ил.
Читайте также:
Шторы не пропускающие свет

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.

Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Определение в трансформаторе

Полезное и негативное воздействие

Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.

Видео

История появления и применение вихревых токов

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника. Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток. Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Читайте также:
Срок годности грецких орехов в скорлупе

Готовые работы на аналогичную тему

  • Курсовая работа Токи Фуко 430 руб.
  • Реферат Токи Фуко 270 руб.
  • Контрольная работа Токи Фуко 190 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.


Токи Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.


Определение из учебного пособия

Природа вихревых токов

Трансформатор — виды и применение

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.


Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Применение токов Фуко

Электрический ток – это?

Многие ученные разных времен считали и считают, что негативного воздействия от вихревых потоков куда больше, чем позитивного. Но тем не менее, человечество научилось применять токи Фуко во благо в различных областях жизнедеятельности.

Наиболее широкое применение они получили в промышленной и машиностроительной сферах. Так, на основе этого явления удалось создать насос для перекачки и закалки расплавленных металлов, а в металлургической и промышленной отраслях используются индукционные печи, которые в несколько раз превосходят аналогичные системы, работающие по другому принципу. Плавление и закалка различных металлов возможны только с применением этого явления. Вихревые потоки способствуют торможению и снижению скорости вращения металлических дисков в индукционных тормозах, без этого бы просто не функционировали скоростные поезда на магнитных подвесках. Также без вихревых потоков Фуко не обходятся современные вычислительные приборы и аппараты, вакуумные устройства, где необходима полная откачка воздуха и других газов, принцип работы современных трансформаторов возможен только благодаря применению в их конструкции вихревых потоков. Более того, оборудование, работающее на основе токов Фуко, обладает существенной экономичностью и хорошей производительностью.


Индукционный мотор, работающий на вихревых потоках

Таким образом, такое действие, как токи Фуко, – полезное, легко объяснимое и довольно понятное явление на сегодняшний день, представляет собой вихревые потоки, которые возникают под воздействием электромагнитной индукции в металлическом, а также любом другом проводнике. Вихревые токи Фуко многие ученые современности относят к удивительным явлениям в электротехнике, которые современное общество научилось использовать с пользой для себя, при необходимости доводя их до нужной мощности, уменьшая при надобности и направляя полученную энергию в правильное русло. Жанн Фуко был умным и одаренным человеком, который, помимо объяснения феномена вихревых потоков, сделал немало других важных открытий, одним из них является нагревание металлических объектов, вертящихся в магнитном потоке благодаря воздействию вихревого тока. Он первым дал вразумительное и достаточно понятное объяснения данного факта.


Применение токов Фуко для торможения дисков в индукционных тормозах

Практическое применение вихревых токов

Применение и эксплуатация элегазовых выключателей

Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом. Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов. Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:

  • образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
  • температура на поверхности панели не повышается чрезмерно;
  • тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).
Читайте также:
Электрическая тяпка для прополки огорода: возможности, преимущества, виды, обзор моделей

Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.


При увеличении тока можно нагреть металлы (сплавы) до температуры плавления

При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.


Применение в проводниках

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.


Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Вам это будет интересно Особенности единиц измерения кВТ и кВА


Определение в трансформаторе

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Читайте также:
Способы обшивки стен гипсокартоном

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Силы вихревых потоков

Чтобы повысить коэффициент полезного действия любого механизма, необходимо максимально уменьшить силы вихревых потоков. Для этого следует увеличить электрическое сопротивление магнитного провода. Метод снижения воздействия вихревых токов зависит от вида электрического устройства. Подавление токов Фуко осуществляют следующими способами:

  1. При сборке трансформаторов сердечники набирают из тонких изолированных пластин. Это позволяет уменьшить степень нагрева от воздействия тока Фуко.
  2. Металлические пластины располагают так, чтобы направление вихревого тока было перпендикулярным к их границам.
  3. С появлением ферритов, которые обладают большим сопротивлением, стало возможным изготовлять цельные сердечники.

А также во время литья элементов сердечника добавляют кремний, который увеличивает электрическое сопротивление. Иногда применяют при сборке куски металлической проволоки, которые предварительно подвергают термической обработке.

Кроме того, применяют специальные прокладки для изоляции. Такие методы при сборке позволяют гораздо снизить силу токов Фуко, в результате чего увеличивается коэффициент полезного действия любого агрегата.

Магнитные провода в высокочастотном оборудовании тщательно изолируют друг от друга и скручивают в виде жгута. Каждую скрутку покрывают специальным изолирующим элементом. Для передачи электрической энергии на значительные расстояния используют многожильный кабель с изолированными проводами.

Вихревые токи Фуко

В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля. В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции. Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.

  1. Физические свойства и определение токов Фуко
  2. Как уменьшить действие токов Фуко
  3. Использование вихревых токов

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств. С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм. Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока. Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок. Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Читайте также:
Часы из виниловой пластинки в технике декупаж с трафаретами

Использование вихревых токов

Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.

Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов. Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.

Конструктивные особенности токарного станка по дереву с копиром: как изготовить его своими руками

Даже самый опытный мастер не сможет повторить один и тот же рисунок на изделии при обработке на токарном станке.

Для этого необходимо копировальное устройство. Копир применяется широко в деревообрабатывающей промышленности для тиражирования деталей.

Классификация

Копир применяется в токарных станках по дереву и по металлу. Он существенно упрощает работу по шаблону и ускоряют производство.

По дереву

По дереву существуют следующие виды оборудования с копиром:

  1. Классические, где в качестве режущего инструмента используется резец. Такие станки не подходят для крупного промышленного производства.
  2. Копировальные с ручным типом управления.
  3. Копировально-фрезерный станок. Применяется для обработки плоских и объемных заготовок.
  4. Агрегаты с Числовым Программным управлением используются на серийном производстве для изготовления дорогостоящих изделий.

Станки с копиром имеют повышенный уровень точности и производительности по техническим характеристикам.

По металлу

По металлу классификация токарных станков аналогична. Есть классические модели, где заготовка закрепляется в планшайбе или патроне и обрабатывается резцом. Для изготовления изделий тиражами применяются копировальные станки.

Фрезеровочные типы станков используются для обработки плоских поверхностей и объемных заготовок. В промышленных масштабах применяется ЧПУ.

Устройство

Классическая конструкция токарного агрегата с копиром включает в себя 5 основных узлов:

  1. Цельная станина их металла. Это основной элемент, к которому крепятся прочие узлы станка.
  2. Передняя и задняя бабки. В них расположены привод, электромотор, коробка. Упорная бабка необходима для фиксации заготовки.
  3. Электрический привод и мотор обеспечивают вращение заготовки.
  4. Непосредственно для обеспечения качественной работы на станке имеется упор.
  5. Ведущий и ведомый центры.

Непосредственно копир является съемной конструкцией.

Самодельный токарно-копировальный станок своими руками с чертежами

Приобрести копировальный токарный станок промышленного изготовления не так дешево. Поэтому многие мастера предпочитают изготовить его в домашних условиях своими руками. При наличии определенных знаний и чертежа это сделать несложно. Возможности такого оборудования зависят от характеристик самого копира.

Необходимые инструменты

Токарю для изготовления оборудования понадобятся следующие инструменты:

  • ручной фрезер;
  • опора из фанеры или металла;
  • болты;
  • бруски упорные;
  • труба 2.5 см в диаметре, чтобы дать направление перемещений по площадке.

Основным инструментом при создании копировального токарного станка является фреза.

Элементы конструкции

Главные запчасти оборудования, которые должны быть в простейшем станке:

  • станина;
  • передняя и упорная бабки;
  • электродвигатель;
  • ведущий и ведомый центры;
  • упор для оснастки.

Наиболее простая модель делается из дрели.

Этапы изготовления

Алгоритм изготовления токарного агрегата, следующий:

  1. По готовому чертежу необходимо изготовить станину посредством сварки. Она должна быть надежной и выдерживать различный уровень вибрации.
  2. Затем установить электромотор. Оптимальный вариант – 200-250 Вт, рассчитанный на 1500 об/мин.
  3. Закрепить на валу планшайбу.

Так получается основа стандартного станка. Затем следует изготовить непосредственно копир.

Создание копира

Основные принципы изготовления копира, который поможет увеличить производительность при создании одинаковых деталей:

  • понадобится ручной фрезер, а для его установки – поверхность из фанеры;
  • в фанерной площадке следует сделать отверстия для закрепления брусков;
  • бруски закрепить саморезами;
  • при изготовлении копира необходимо пользоваться уровнем, поскольку даже малая неточность может привести к значительным погрешностям при изготовлении изделия;
  • площадка должна без препятствий передвигаться по станине станка.

Установка элементов конструкции

После создания копира необходимо установить все элементы конструкции:

  • брусок поставить горизонтально, а на него саморезами прикрепить шаблон;
  • непосредственно конструкция должна быть изготовлена таким образом, чтобы при необходимости копир можно было откинуть или отодвинуть и станок использовать как стандартное токарное оборудование.

Горизонтальный брусок

Это важный элемент. Размер бруска в идеале 3х7 см. Он крепится к вертикальным подставкам на фанерной площадке при помощи саморезов.

Читайте также:
Учимся как сделать венецианскую штукатурку своими руками

Шаблон

Шаблон делают из фанеры. Крепят его на передней части бруса. Верхнюю платформу обязательно проверить на совпадение с осью непосредственно на шаблоне.

Кромки обязательно обработать шлифовальной машинкой, чтобы на них не было зазубрин.

Особенности эксплуатации и техника безопасности

Принцип работы копировально-токарного оборудования прост:

  • в горизонтальном положении зажимается заготовка будущего изделия;
  • запускается станок, который вращает заготовку вокруг оси;
  • резец снимает с заготовки лишнюю древесину, придавая ей необходимую форму.

Чтобы избежать травматизма при работе необходимо соблюдать основные правила техники безопасности:

  1. Не выставлять и не снимать заготовку с работающего оборудования.
  2. Не облокачиваться и не прижиматься к станку во время работы.
  3. Стружку удалять только специальной щеткой.
  4. При работе станок не должен оставаться без присмотра.
  5. Мастер должен работать в защитных очках, чтобы стружка не попадала в глаза.

Токарный агрегат с копиром успешно используется как на крупных серийных производствах, так и в домашних мастерских для изготовления одинаковых изделий. Такой станок можно изготовить самостоятельно, имея ненужный ручной фрезер, лист фанеры и горизонтальные бруски определенного размера.

Копировальный токарный станок по дереву своими руками

Для работы с деревом может применяться самое различное оборудование, в том числе станки. За счет применения подобного оборудования ускоряет процесс механической обработки деревянных заготовок. Весьма востребован токарный станок по дереву с копиром, который существенно упрощает выполнение поставленных задач: изготовление ножек для мебели, дверных ручек и балясины.

Классификация токарных станков

Токарные станки многие решают выбрать для покупки и установки в собственной мастерской по причине возможного их применения при изготовлении изделий цилиндрической формы. Существует довольно большое количество различных моделей, разделить их можно на несколько групп:

  1. Классическое оборудование, когда заготовка располагается в патроне или планшайбе. В качестве режущего инструмента применяется резец. Заготовка может вращаться с различной скоростью. Однако оборудование не подходит для массового производства.
  2. Копировальные станки могут применяться для работы по шаблону. За счет применения шаблона можно упростить задачу по изготовлению однотипных изделий. Для мелкосерийного производства подходит аппарат с ручным управлением, так как он имеет низкую стоимость и прост в применении.
  3. Фрезеровальные станки сегодня встречаются крайне часто. Это связано с тем, что они получили широкое применение в области производства корпусных и плоских деталей из дерева и металла. Встречается и токарно-фрезерный станок по дереву, который может применяться для выполнения различных операций.
  4. Модели с числовым программным управлением. При массовом производстве или изготовлении дорогих изделий может применяться оборудование, которое имеет блок ЧПУ. Однако применение копира существенно снижает себестоимость изделия.

Копировальное устройство для токарного станка по дереву обладает весьма привлекательными характеристиками, за счет чего их стали устанавливать в частных и других мастерских.

Классическая конструкция

Промышленные станки обладают достаточно сложной конструкцией, особенно варианты исполнения с ЧПУ, которые могут проводить обработку в автоматическом режиме. Требуемое изделие можно получить и при применении копировального оборудования. Классическая конструкция представлена сочетанием следующих основных узлов:

  1. Станина выступает в качестве основания и связующего элемента. Конструкция изготавливается при применении металла, отдельные элементы соединяются при помощи сварки. Станина может иметь различную высоту. Каждый мастер при изготовлении самодельной конструкции выбирает свою высоту.
  2. Передняя и задняя бабка является также неотъемлемой частью станка. Передняя бабка используется для размещения коробки скоростей и привода, а также электрического мотора. Задняя бабка применяется для фиксации заготовки, за счет чего появляется возможность получения больших по длине изделий.
  3. Основное вращение получает заготовка. Передается оно от электрического мотора через привод.
  4. Упор для инструмента также позволяет проводить качественную обработку. Стоит обезопасить место резания, чтобы исключить вероятность получения травмы рук или попадания постороннего элемента.
  5. Ведущий и ведомые центра, применяемые для закрепления заготовки.

Самодельный копир для токарного станка по дереву позволяет также проводить качественную обработку заготовок.

Изготовление своими руками

Промышленные варианты исполнения станков обходятся дорого. Именно поэтому многие рассматривают возможность сборки станка своими руками. Рекомендации по проведению работы следующие:

  1. Для начала следует разработать или скачать чертеж, по которому будет проводиться сборка. Как правило, берется чертеж обычного токарного станка, который изменяется под установку копира.
  2. Работы начинаются с создания станины. Для этого потребуются уголки, а также листы металла. Соединение отдельных элементов проводится при применении сварочного аппарата. Стоит учитывать, что винтовые соединения характеризуются меньшей жесткостью. Станина должна быть прочной и устойчивой к вибрации.
  3. Основным узлом считается электрический двигатель. Для того чтобы повысить функциональность оборудования, проводится установка электрического двигателя с мощностью 200−250 Вт при 1500 оборотах в минуту. Если планируется проведение обработки крупных заготовок, то устанавливается более мощный мотор. Следует предусмотреть наличие защиты мотора от воздействия со стороны окружающей среды.
  4. Для фиксации заготовки на выходной вал крепится планшайба. Она имеет несколько острых элементов, на которые она набивается. За счет острых элементов обеспечивается передача вращения, но фиксация проводится за счет задней бабки с центрами.

Больше всего внимания уделяется производству копира. Именно он отличает токарный станок от копировального.

Создание копира

Копир применяется для производства похожих изделий. За счет его применения существенно повышается показатель производительности. Среди особенностей, связанных с созданием копира, отмечают следующие моменты:

Читайте также:
Часы из виниловой пластинки в технике декупаж с трафаретами

  1. Основой для этого узла становится ненужный ручной фрезер.
  2. Для расположения копира применяется площадка размером 20 на 50 см. Для крепления устройства создаются отверстия и устанавливаются бруски.
  3. Для обеспечения обработки по всей длине заготовки площадка должна перемещаться вдоль всей станины.
  4. Крепление брусков проводится при помощи саморезов. Они обеспечивают надежное крепление устройства.
  5. При выполнении работ следует использовать уровень, так как даже незначительное отклонение от горизонтального положения приведет к существенным погрешностям.
  6. На токарном станке устанавливается брусок в горизонтальном положении. Именно на нем будет крепиться шаблон. Крепление бруса проводится также при применении саморезов.
  7. Конструкция создается так, что при необходимости можно отвести копир и использовать станок как обычное токарное оборудования.

Недостатки рассматриваемого устройства

У самодельного копировального станка есть довольно большое количество существенных недостатков. Примером можно назвать такую информацию:

  1. Для перемещения поверхности с фрезерным механизмом требуется две руки. Это связано с тем, что подвижный элемент фиксируется плохо, перемещать его приходится обеими руками. При допущении ошибок во время производства конструкции подвижный элемент может перекашиваться и заклинивать.
  2. Для повышения точности обработки проводится установка винтовой передачи.
  3. Копир подходит для изготовления исключительно простых изделий. Примером будет то, что витые узоры на столбиках при применении подобного станка повторить будет невозможно.
  4. Повысить универсальность устройства можно путем замены фрезы циркулярки.

Именно поэтому для налаживания производства сложных деревянных элементов рекомендуется устанавливать промышленные станки.

Станок по дереву Proma DSL-1200

Рассматриваемая модель предназначена для обработки деревянных изделий, которые могут применяться в качестве декоративных элементов. Отличительной чертой конструкции специалисты называют наличие двух резцов:

  1. Первый предназначен для обработки заготовок цилиндрической формы, за один проход можно снимать более 10 мм. За счет первого резца можно получить круглую заготовку, как и на обычном токарном станке.
  2. Второй резец предназначен для работы по копиру. Именно он позволяет изготавливать различные изделия по копиру.

Эта модель станка может применяться для работы с большими заготовками. Для этого конструкция оснащается люнетом, который крепится на штанги, выступающие в качестве направляющих. Установленная планшайба позволяет обрабатывать многогранные изделия.

Основные характеристики модели:

  1. Установленный электрический двигатель работает от трехфазной сети с напряжением 380 В. Именно поэтому станок не приобретается для установки в частной мастерской.
  2. Максимальная длина заготовки составляет 1200 мм.
  3. Компоновка представлена сочетанием двух колон, между которыми размещается заготовка. Отметим, что станок обладает компактными размерами, за счет чего он не занимает много места в мастерской.

Недостатком этого предложения, как и многих других, можно назвать довольно высокую стоимость.

Копировальная модель CL-1201

Для получения изделий из дерева может применяться станок модели CL-1201 или CL-1500b. Первый вариант исполнения обладает весьма привлекательными эксплуатационными качествами:

  1. Применяемый шпиндель может изменять направление вращения. За счет этого существенно расширяется область применения модели. Изменение направления вращения шпинделя проводится специальной рукояткой.
  2. Станок позволяет с высокой точностью выбирать скорость вращения шпинделя. За счет этого можно обеспечить наиболее благоприятные условия для точения дерева исходя из масс, габаритов и вида древесины.
  3. Для установки основных параметров есть пульт. Конструкция может устанавливаться на передней или задней бабке в зависимости от предпочтений мастера. Пульт представлен сочетанием нескольких клавиш.
  4. При изготовлении колонны применяется чугун. Кроме этого, станина изготавливается при применении высококачественной стали. За счет совмещения этих материалов снижается степень вибрации конструкции на момент работы.
  5. В базовую поставку входит копир, по которому может проводиться обработка. За счет этого снижаются расходы, а станок становится более функциональным в применении.
  6. Конструкция станка имеет фрезерную приставку, которая может применяться для получения продольных пазов.
  7. Задняя бабка применяется для более точной фиксации заготовки. Ее положение также может изменяться. В поставку включаются центра, которые подбираются в зависимости от особенностей заготовки.
  8. Суппорт характеризуется высокой мобильностью. Глубина врезания инструмента может регулироваться рычагом.
Читайте также:
Электрическая тяпка для прополки огорода: возможности, преимущества, виды, обзор моделей

Кроме этого, производитель уделил довольно много внимания степени защиты станка от воздействия окружающей среды. Например, двигатель имеет систему защиты от перегрева или перегрузки, все электронные детали также защищены от воздействия влаги и пыли.

Единственным, но существенным недостатком является высокая стоимость предложения. Самодельная конструкция обойдется в несколько раз дешевле.

Самодельный токарно-копировальный станок по дереву своими руками

Токарно-копировальные станки используются для изготовления множества одинаковых деталей, например, балясин для лестничных ограждений, столбиков для забора и т.д. Сделать функциональную конструкцию можно своими руками, используя ненужные в хозяйстве устройства.

Изготовление токарного станка

Самая примитивная модель токарного станка изготавливается из обычной дрели. Но это не единственное решение. Основные части будущего устройства:

  • станина;
  • передняя и задняя стойки (бабки);
  • электромотор;
  • ведущий и ведомый центры;
  • упор для инструмента.

Станина — это база для размещения всех элементов и механизмов. Поэтому она выполняется из толстого бруса дерева или металла. Передняя бабка надежно фиксируется на основании, на нее будет закрепляться деталь. В передней стойке размещается устройство, передающее движение от электромотора на ведущий центр и далее на деталь.

Задняя стойка (бабка) перемещается по направляющей на станине, она удерживает свободный конец заготовки. Между бабками размещается упор для инструмента. Бабки должны располагаться строго по единой оси.

Для станка, сделанного своими руками, подойдет электродвигатель мощностью 200 — 250 Вт, оборотистостью не более 1500. Если же планируется обрабатывать крупные детали, требуется более мощный двигатель.

На шкив электромотора надевается планшайба, которая фиксирует большие заготовки. Планшайба содержит острия, на которые набивается деталь. Противоположный конец детали фиксируется уголком.

Чтобы превратить обычный токарный станок в копировальный, требуется дополнительное устройство — копир.

Копир для токарного станка

Основой копира будет служить ненужный ручной фрезер. Его размещают на поверхности из фанеры 12 мм, размер площадки 20 х 50 см. В площадке проделывают отверстия для крепежа и фрезы, а также установлены упоры — бруски для фиксации фрезы. Фрезер размещается между фиксаторами и закрепляется парой больших гвоздей.

Отдаленная часть площадки перемещается вдоль станины по направляющей — трубе. Концы ее фиксируют в брусках из дерева. Бруски прикрепляются к станине саморезами. При фиксации трубы необходимо использовать уровень и совместить ось трубы с центром станка. Перед установкой на трубу надевается пара брусков с отверстиями, легко передвигающиеся по направляющей. К брускам прикрепляется площадка, на которой размещен фрезер.

Второй важный элемент устанавливается своими руками непосредственно на токарном станке — брусок в горизонтальном положении, на который будут прикрепляться шаблоны. Подойдет брус 7 х 3 см, к вертикальным подставкам он крепится саморезами. Подставки прикручиваются к станине. Верхняя поверхность бруска должна четко совпадать с осью станка.

Когда копир не используется, брусок демонтируют, площадка с фрезером отводится назад и станок превращается в обычный токарный.

Упор выполняется из толстой фанеры и прикрепляется к рабочей поверхности. Фактически упор играет роль копира в данной конструкции. Он закрепляется вертикально, к торцу рабочей поверхности фиксируется на переходный брус из дерева. Копир можно снимать, он устанавливается на подставку саморезами. Подставку же необходимо зафиксировать жестко, без возможности снятия.

Шаблоны выполняются из фанеры, с помощью саморезов они прикручиваются к передней поверхности бруска. Верхнюю поверхность бруса следует совместить с осью шаблона.

Минусы предложенной конструкции

  • Рабочую поверхность с фрезером приходится перемещать обеими руками, так как во время работы она перекашивается и заклинивает;
  • копировать можно только достаточно простые элементы, например, невозможно повторить витые узоры на столбиках;
  • для перемещения резака удобнее предусмотреть винтовую передачу;
  • а фрезу лучше заменить циркуляркой, такое устройство получится более универсальным.

Видеоролики с демонстрацией работы самодельных токарно-копировальных станков:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: