Схема твердотельного реле: рекомендации по сборке устройства своими руками и инструкция по подключению

Твердотельные реле. Схемы подключения

Схемы подключения твердотельных реле

В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.

Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.

Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Различия схем включения реле

По виду подключения твердотельные реле можно разделить на следующие категории:

По управлению (виду входного управляющего сигнала):

  • постоянное напряжение (встречается чаще всего),
  • переменное напряжение,
  • постоянный ток 4-20 мА,
  • переменный резистор.

По виду коммутируемого тока

  • твердотельные реле переменного тока
  • твердотельные реле постоянного тока

По количеству фаз

  • одна фаза
  • три фазы (как правило, фактически это две фазы)

В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.

Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))

Схемы подключения твердотельных реле

Теперь рассмотрим подключение твердотельного реле подробнее.

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

С током не всё так просто, но об этом ниже.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Ещё раз напоминаю –

НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.

НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.

Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.

Теперь подробнее по управлению твердотелками.

Схемы с управлением от транзистора

Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.

Управление транзистором PNP, НО реле

Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.

Управление транзистором PNP, НО реле

Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.

Управление транзистором NPN, НО реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.

Управление резистором

Плавно подходим к переменному току.

Управление переменным резистором

Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.

Схема с фиксацией и управлением кнопками (защелка)

Управление твердотельным реле с фиксацией включения

Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.

Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.

Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.

Читайте также:
Типичные ошибки владельцев прудов. : описание и особености, фото

Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.

Схемы включения трехфазных твердотельных реле

Трехфазное твердотельное реле, схемы подключения.

Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).

Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.

Реверсивные твердотельные реле

Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.

Пример включения трехфазного реле – на фото ниже:

Включение трехфазного твердотельного реле

Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.

На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.

Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко :( .

Выбор твердотельных реле, защита и особенности работы

Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.

Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.

Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.

Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…

Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.

Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.

То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.

Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.

Напоследок – защита при КЗ

Производители рекомендуют использовать специальные предохранители для твердотельных приборов:

  • gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
  • gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
  • aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.

Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?

Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.

Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.

Почему – поясню на графике.

Кривые отключения или токо-временные характеристики

Подробно про выбор защитного автомата рассказано в другой статье.

Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:

Читайте также:
Устройство шумоизоляции стен в квартире под обои

Автомат с характеристикой В6 (обведено красным)

Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.

Пишите в комментариях, у кого какой опыт по применению!

Полезные файлы, возможно, написано информативнее, чем у меня:

• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 4071 раз./
• Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4580 раз./

Где купить твердотельные реле

Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.

Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.

Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!

Как своими руками собрать схему твердотельного реле

Даже начинающий радиолюбитель способен собрать твердотельное реле. Это устройство создано на базе полупроводниковых радиодеталей. Силовые ключи собраны на тиристорах, транзисторах либо симисторах. Для изготовления схемы твердотельного реле своими руками, стоит выяснить принцип работы и особенности подключения устройства. В результате с его помощью можно повысить надежность и безопасность электроцепи.

  • Преимущества и недостатки
  • Виды устройств
  • Рекомендации по изготовлению
    • Электронные элементы и проверка работоспособности
    • Конструкция корпуса
    • Заливка компаундом

Преимущества и недостатки

В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.

Однако начать стоит с его описания основных преимуществ:

  • Возможность коммутировать мощные нагрузки.
  • Переключение происходит с высокой скоростью.
  • Качественная гальваническая развязка.
  • Способно выдерживает серьезные перегрузки на коротком временном отрезке.

Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства. Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики. Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Некоторые виды устройств способны работать только в сетях с постоянным током. При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.

Виды устройств

Твердотельные реле можно разделить на несколько групп в соответствии с определенными параметрами. Чаще всего для классификации этих прибор используется категория подключенной нагрузки, а также способ контроля и коммутации напряжения. Таким образом, можно выделить 3 вида реле:

  • Приборы, работающие в цепях постоянного тока.
  • Переключатели для электроцепей переменного тока.
  • Универсальные реле.

К первой группе принадлежат ТТР с показателями коммутируемых напряжений 3−32 В. Они обладают небольшими габаритами, оснащены светодиодной индикацией и могут эффективно работать в температурном диапазоне от -35 до 75 градусов. Представителями второй категории являются переключатели, предназначенные для работы в электроцепях переменного тока при напряжении 24−220 В. Универсальные устройства имеют возможность ручной регулировки для использования в конкретных условиях.

Если классифицировать приборы по характеру подсоединенной нагрузки, то можно выделить 2 типа приборов, работающих в сетях переменного тока, — одно- и трехфазные. С их помощью можно управлять довольно высокой нагрузкой при силе тока 10−75 А. также стоит обратить внимание на пиковые показатели электротока, которые способны достигать 500 А.

Твердотельные переключатели можно применять в различных типах цепей, например, емкостных либо резистивных. Их конструкция позволяет избавиться от шума во время работы, а также добиться плавного управления приводами, например, электромоторами или лампами. ТТР отличаются высокой надежностью, но во многом срок службы приборов зависит от производителя.

Рекомендации по изготовлению

В соответствии с особенностями конструкции, схему прибора стоит собирать не на текстолите, а с помощью навесного монтажа. Существует довольно много схемотехнических решений, а выбирать нужный следует в зависимости от различных параметров, например, коммутируемой мощности.

Электронные элементы и проверка работоспособности

В качестве примера можно рассмотреть простую схему.

Применение оптической пары МОС3083 позволяет формировать управляющий сигнал, входное напряжение которого находится в диапазоне 5−24 В. Чтобы продлить срок работы светодиода АЛ307А, в схему введена цепочка, состоящая из сопротивления и стабилитрона. Найти все электронные элементы будет несложно. Собранная схема в обязательном порядке проверяется на работоспособность.

Читайте также:
Ультразвуковая ванна своими руками

Для этого можно не подключать к цепи напряжение 220 В, а ограничиться параллельным подсоединением тестера к линии управления симистора. На измерительном приборе предварительно следует выбрать режим «мОм» и подать питание в 5−24 В на участок генерации управляющего напряжения. Если схема была собрана правильно, то тестер покажет разницу сопротивлений в диапазоне мОм-кОм.

Конструкция корпуса

Основанием самодельного твердотельного реле будет пластина из алюминия толщиной от 3 до 5 мм. Размеры пластины принципиального значения не имеют и при выборе материала необходимо учитывать только условия качественного отвода тепла от симистора. Также следует помнить, что поверхность основания должна быть ровной и его необходимо предварительно зачистить с помощью мелкой наждачной бумаги с двух сторон.

Следующим шагом станет установка по периметру пластины бордюра из пластика либо плотного картона. В результате должен получиться короб, который затем заливается эпоксидной смолой. Внутрь корпуса устанавливается собранная с помощью навесного монтажа схема реле. При этом на пластине из алюминия должен располагаться только симистор.

Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Также следует помнить, что у некоторых симисторов анод не изолирован, и они устанавливаются только через слюдяную подложку.

Заливка компаундом

Для изготовления смеси потребуется алебастр и эпоксидная смола без отвердителя. Использование алебастра позволяет решить сразу две задачи — создается смесь идеальной консистенции и получается достаточное количество раствора при минимальном расходе эпоксидной смолы. Во время приготовления компаунд тщательно перемешивается, после чего можно добавить отвердитель и снова перемешать.

После этого созданная схема аккуратно заливается компаундом до верхнего уровня, оставляя на поверхности только часть головки контрольного светодиода. При изготовлении корпуса твердотельного переключателя можно использовать любые растворы, подходящие для литья. Единственным критерием при выборе ингредиентов является отсутствие способности проводить электроток.

Самодельное ТТР станет хорошим выбором для подключения к низковольтной цепи с малой мощностью. Собирать более мощные приборы, рассчитанные на высокие напряжения нецелесообразно. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор.

Твердотельное Реле Схема Принципиальная

Для проверки открытия симистора необходимо использовать мегомметр. Это устройство бывает двух видов: внутреннего и внешнего.


Описание В отличие от электромеханических реле EMR , которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода. Между цепями управления и нагрузкой качественная изоляция.

Однако твердотельные реле с очень высоким номинальным током плюс А все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.
Пару слов о твердотельных реле.

В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Оно подобно диммеру умеет регулировать мощность нагрузки выходное напряжение , для этого на вход подают аналоговый сигнал — напряжение, ток или подключают переменное сопротивление.

Их главный плюс — практически полное отсутствие э-м помех, малый показатель шума при работе, экономия в плане потребления электричества и оперативность самой работы. С его помощью происходит притягивание контактов.

Отличия несущественные, на работу не влияют никак.

Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники — силовые транзисторы, симисторы, тиристоры.

ТВЕРДОТЕЛЬНОЕ РЕЛЕ ? ОШИБОЧКА ОДНАКО

Преимущества и недостатки

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Подходит для управления резистивной, емкостной и индуктивной нагрузкой.

В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле.

Но если токи высокие, будет происходить сильный нагрев элементов.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования. Схема для подключения реле Все полупроводниковые устройства такого рода поделены на участки, среди которых: входная часть, оптическая развязка, триггер, а также цепи переключения и защиты.

При этом пиковые кратковременные значения тока могут достигать величины А.

Переключение происходит с высокой скоростью. Заливка компаундом Преимущества и недостатки В отличие от других типов реле, твердотельное лишено подвижных контактов.

Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного SPST-NO режима работы электромеханического реле. Опто-триачный изолятор MOC имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.
лекция 357 Твердотельное реле

Читайте также:
Стоимость проекта частного жилого дома – цены на коттеджи из разных материалов

Особенности процесса изготовления

Нагрузка нагревательного элемента составляет Вт.

Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.

В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.

Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.

Похожие записи


Поэтому существует максимально возможная задержка выключения между удалением входного сигнала и отключением тока нагрузки в один полупериод. Между цепями управления и нагрузкой качественная изоляция. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. Такой же принцип регулировки используется в бытовых диммерах для освещения. Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается.

Видео: тестирование твердотельного реле. Нужно выделить такие свойства твердотельных реле: При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.

С его помощью происходит притягивание контактов. Защита может находиться как внутри корпуса реле, так и отдельно. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор. В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом.
Твердотельное реле вместо контактора.

Виды устройств

Для корректной работы твердотельного реле при маленьких токах нагрузки соизмеримых с током утечки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке. В соотношении с методом коммукации выделяют: устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции; реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание; реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. А теперь давайте рассмотрим более детально процесс изготовления устройства.

Параметры мощности — от 3 до 32 Вт.

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 — источник напряжения управления; 2 — оптопара внутри корпуса реле; 3 — источник тока нагрузки; 4 — нагрузка Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Выбор и покупка твердотельного реле Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Характеристики твердотельного реле

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC доступны другие опто-триаки. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор. От типа и особенностей развязки зависят общие конечные характеристики прибора и особенности его работы.

Отличия несущественные, на работу не влияют никак. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

Комментарии

Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор. Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет. Охлаждение Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах.
Твёрдотельное реле. Что это такое и как работает? Испытание на практике

Твердотельное реле: устройство, принцип работы, схемы подключения

При организации логических схем управления оборудованием в качестве коммутаторов используются различные виды реле. В связи с развитием и совершенствованием полупроводниковых приборов на смену классическим логическим элементам пришло твердотельное реле (ТТР). Для чего используется, как устроен и как функционирует данный вид устройств, мы рассмотрим в данной статье.

Назначение

Сфера применения твердотельного реле достаточно обширна и охватывает самые разнообразные отрасли промышленности и народного хозяйства. Их используют в таких системах, где по условиям эксплуатации можно исключить периодический контроль состояния коммутатора. Твердотельные приборы устанавливаются в оборудовании с частыми коммутациями, где классические подвижные контакты не справляются с работой и перегорают. Или в таких электроустановках, где недопустимо искрообразование при разрывании или замыкании цепи контактной группой.

Помимо этого твердотельные реле характеризуются малыми габаритами, что делает их весьма привлекательной альтернативой для слаботочного оборудования. Они применяются в электронике и бытовых устройствах, а также труднодоступных местах, где после ввода прибора в работу отсутствует возможность технического обслуживания.

Читайте также:
Стойка ресепшн – важнейший элемент офисной мебели

Основными направлениями, в которых вы часто встретите твердотельное реле, являются:

  • нагревательные электроприборы с ТЭНами, спиралями для контроля температуры нагревания;
  • контроль температурных режимов в технологических процессов;
  • отслеживание рабочих режимов силовых трансформаторов;
  • регулировка степени освещенности или включение освещения в зависимости от времени суток;
  • применение в качестве датчика движения;
  • включение и отключения электродвигателей, переключение различных режимов их работы;
  • в качестве электронных ключей силовых и слаботочных электроустановок;
  • как коммутаторы станочного оборудования, в котором нужна высокая частота срабатывания;
  • для переключения позиций в источниках бесперебойного питания.

Стоит отметить, что повсеместная автоматизация технологических процессов все чаще задействует твердотельное реле в качестве коммутационного устройства.

Устройство

Конструктивно твердотельное реле представляет собой расширенный вариант полупроводникового ключа. В состав устройства входят резисторы, транзисторы, симисторы или тиристоры, которые и лежат в основе их работы. За счет того, что вся конструкция имеет монолитную структуру – единый блок, реле и получило название твердотельного.

Условно все устройство можно разделить на несколько блоков:

  • Входной узел – используется для подачи управляющего сигнала. В состав узла входит токоограничивающий резистор и устройство для передачи сигнала на коммутирующий элемент.
  • Триггерный узел – применяется для обработки получаемых сигналов. Как правило, является частью линии оптической развязки, но может устанавливаться и отдельно от нее.
  • Узел оптической развязки – осуществляет гальваническое разделение основного участка и контролирующего. Является неотъемлемой составляющей реле переменного тока. От конструктивных особенностей этого узла напрямую зависит принцип действия коммутатора.
  • Цепь коммутации – производит включение и отключение линии питания нагрузки. Функционирует по принципу запирания и отпирания p-n перехода, поэтому классического переключения в твердотельных реле не происходит.
  • Цепи защиты – осуществляют устранение помех, защищают твердотельное реле от перегрузок и токов коротких замыканий. По месту расположения бывают внутренней и внешней установки.
  • Выходной узел – используется для подключения нагрузки, как правило, представлен парой контактов или клемм.

Следует отметить, что в зависимости от типа твердотельного реле, состав основных блоков может существенно отличаться. Поэтому определенные модели могут обходиться без некоторых из вышеперечисленных узлов.

Принцип работы

В зависимости от вида твердотельного реле, может отличаться и принцип его действия. В основе работы лежит два сигнала – управляющий и управляемый, которые могут генерироваться и передаваться различным способом. Поэтому в качестве примера мы рассмотрим одну из разновидностей данного устройства, функционирующего посредством оптрона.

Рис. 2. Принцип действия твердотельного реле

Оптрон, в соответствии с п.1.1 ГОСТ 29283-92 осуществляет генерацию электромагнитных или световых импульсов с определенными параметрами. В соответствии с которым и происходит взаимодействие его компонентов. Конструктивно оптрон представляет собой оптическую пару – светодиод и фотодиод, установленные в разных блоках твердотельного реле.

При подаче питания на входной узел твердотельного реле начнется протекание тока через цепь светодиода. В результате чего световое излучение попадет на фотодиод. При достижении световым потоком заданной интенсивности, фотодиод установит рабочие параметры для цепи нагрузки и произведет коммутацию нагрузки.

Отличия от электромеханических реле

Если рассматривать основные отличия, то они заключаются в принципе реализации логических операций. Так, в соответствии с п. 3.1.1 ГОСТ IEC 61810-7-2013 под электромеханическим реле следует понимать такое устройство, в котором операции производятся за счет движения механических элементов. В частности, на катушку индуктивности подается управляющий импульс, который создает достаточный электромагнитный поток для перемещения сердечника. Механически сердечник соединяется с контактной группой, которая замыкается и размыкается в зависимости от управляющего сигнала.

Твердотельное реле, в свою очередь, не имеет подвижных частей, а изменение логического состояния производится путем перевода полупроводникового элемента из открытого состояния в закрытое, и, наоборот. Поэтому основным отличием от электромеханических моделей является отсутствие подвижных контактов.

Технические характеристики

При выборе конкретной модели для замены вышедшего со строя твердотельного реле или для установки в новом оборудовании необходимо руководствоваться основными характеристиками прибора.

К основным параметрам относятся:

  • Класс и величина напряжения на входе и выходе устройства;
  • Сопротивление твердотельного элемента или потребляемая мощность;
  • Ток срабатывания – определяет рабочие параметры перехода из одного логического состояния в другое;
  • Перегрузочная способность – кратная величина номинальному току;
  • Электрическая прочность изоляции;
  • Тип монтажа – наличие крепежных деталей или пайка на выводы;
  • Материал, из которого изготовлено реле;
  • Габаритные размеры;
  • Наличие дополнительных функций.

Все характеристики твердотельных реле будут отличаться в зависимости от вида конкретного устройства.

Разделение по видам обуславливается как рабочими параметрами некоторых устройств, так и сферой их применения. Поэтому, классификация твердотельных реле осуществляется по нескольким факторам, определяющим тот или иной параметр.

Так, все логические элементы, в зависимости от рода тока, подразделяются на две группы – реле постоянного и переменного тока. Первые отличаются высокой надежностью и отлично справляются с поставленными задачами, как при низких, так и при высоких температурах. Второй вид обладает высокой скоростью срабатывания.

В зависимости от количества подключаемых фаз все твердотельные реле подразделяются на однофазные и трехфазные. Первый вид обеспечивает питание однофазной нагрузки или устройств постоянного тока. Трехфазные, в большинстве случаев, используются для питания электродвигателей, но встречаются коммутаторы и для других типов оборудования.

Рис. 4. Трехфазные и однофазные твердотельные реле

Читайте также:
Теплый пол электрический под плитку: плюсы и минусы

По типу управления различают следующие виды:

  • Фазовое – плавно изменяет напряжение на выходе в процентном соотношении;
  • Мгновенное – производит переключение мгновенно;
  • При переходе через 0 – переключение осуществляется только при достижении синусоидой нулевого значения.

В зависимости от пропускаемой нагрузки, все устройства могут подразделяться на слаботочные и силовые. Первые устанавливаются в цепи управления, вторые используются для питания мощного бытового и промышленного оборудования.

Схемы подключения

На практике существует несколько вариантов подключения твердотельного реле к цепи питания и управления. Так, в зависимости от величины и рода питающего напряжения выделяют схему постоянного и переменного тока:

Рис. 5. Схема подключения твердотельного реле на 230 В

Как видите, здесь от фазного и нейтрального проводника напряжение подается и на цепь управления (выводы 3 и 4), и к нагрузке. Через выводы 1 и 2 фазный проводник устанавливается в коммутацию твердотельного реле для питания потребителя. Включение и отключение производится путем замыкания контактной группы К1 в цепи управления.

Еще один вариант схемы – управление нагрузкой посредством низковольтного сигнала:

Рис. 6. Питание твердотельного реле низким напряжением

В таком случае напряжение сети изначально подается на блок питание, где оно преобразуется и понижается. А затем через контакты К1 поступает в цепь управления твердотельного реле на выводы 3 и 4. Питание нагрузки происходит по тому же принципу, что и в предыдущем случае.

Помимо этого схемы подключения твердотельных реле подразделяются на две категории – нормально открытые и нормально закрытые. Первый вариант подразумевает такой принцип действия, когда подача напряжения на цепь управления подает напряжение к нагрузке.

Рис. 7. Нормально открытая схема твердотельного реле

Второй вариант схемы при подаче напряжения в цепь управления отключает питание нагрузки.

Рис. 8. Нормально закрытая схема твердотельного реле

Помимо этого существует трехфазная схема питания для соответствующего типа нагрузки:

Рис. 9. Трехфазная схема подключения твердотельного реле

Как видите на схеме, здесь используется трехфазное твердотельное реле. Для цепи управления используется пониженное напряжение, подаваемое от преобразователя. Линия трехфазного питания подключается к выводам A1, B1, C1, а трехфазный электродвигатель к выводам A2, B2, C2.

Достоинства и недостатки

Данный вид логических элементов характеризуется рядом плюсов и минусов в эксплуатации. К основным преимуществам твердотельных реле относятся:

  • Длительный срок эксплуатации в сравнении с электромеханическими моделями;
  • Может выполнять значительно больше коммутаций до наработки на отказ;
  • Бесшумность в работе;
  • Небольшой размер и вес;
  • Отсутствует механический износ контактной группы из-за их отсутствия;
  • Возможность установки в пожароопасных и взрывоопасных зонах за счет отсутствия искр в процессе коммутации;
  • Может работать без скачков напряжения и тока, чем в значительной мере нивелирует переходные процессы;
  • Внутреннее сопротивление практически не меняется в процессе эксплуатации;
  • Практически невосприимчивы к воздействию вибрации, оседанию пыли, электромагнитным полям.

Но, вместе с тем, твердотельные реле обладают и некоторыми недостатками. Существенной проблемой является нелинейная вольтамперная характеристика. В отключенном состоянии сопротивление p-n хоть и большое, но не бесконечное, чем обуславливаются токи утечки. Во включенном состоянии сопротивление полупроводника обуславливает нагрев твердотельного элемента и необходимость его принудительного охлаждения в силовых реле.

Также к недостаткам относят необходимость принятия мер против ошибочного срабатывания. При пробое твердотельные реле часто остаются во включенном состоянии, что создает опасность для оборудования и эксплуатационного персонала. За счет наличия p-n перехода пропускание тока в обратном направлении происходит не мгновенно. Одной из наибольших проблем является перегрузка, из-за которой реле мгновенно выходит со строя.

Схема сварочного трансформатора – как стать электриком за несколько минут?

Схема сварочного трансформатора должна быть знакома тем, кто планирует воспользоваться электрической сваркой. Благодаря этому аппарату, можно производить ручную дуговую падающую сварку. Обсудим его устройство.

Схема сварочного трансформатора: зачем ее рассчитывать?

Любой трансформатор для контактной точечной сварки характеризуется двумя главными параметрами – выходным напряжением и током. А в основные функции этого аппарата входит регулирование сварочного тока и ограничение тока короткого замыкания. Стоит знать, что для того чтобы получить падающую характеристику, а также ограничение тока короткого замыкания, необходимо во время сварки последовательно с дугой включить большое сопротивление.

Оптимальным вариантом является индуктивное сопротивление. Это самый экономичный способ в данном случае. Именно такое сопротивление можно создать при помощи отдельной дроссельной катушки, если ее включить последовательно с дугой, или несколькими дроссельными катушками, если их объединить в одно целое с самим трансформатором, который необходимо также последовательно включить с дугой. Еще один вариант – увеличить внутреннее магнитное рассеяние самого трансформатора (здесь катушки не используют).

При планировании работы хорошим тоном считается производить расчет прибора. По входным значениям напряжения и силы тока вычисляют минимальную мощность, так можно узнать, чего ждать от вашего помощника. Как рассчитать сварочный трансформатор, знают инженеры, а если вы не планируете самостоятельно изготавливать эти механизмы, то можно воспользоваться калькуляторами в интернете, или готовыми данными в инструкции к каждому прибору.

Принцип работы сварочного трансформатора – функции дросселя

Устройство сварочного трансформатора зависит от главной детали – дросселя. Он позволяет регулировать сварочный ток и работает так: когда дуга при коротком замыкании возбуждается, ток, пройдя через обмотку из медного дросселя, создает мощнейший магнитный поток, который наводит в дросселе электродвижущую (ЭДС) силу самоиндукции. Именно эта сила направлена против напряжения сварочного трансформатора.

Читайте также:
Чехол на диван Икеа, функционал, размеры, материалы, цвета

Стоит учитывать, что при вторичном напряжении трансформатора оно полностью поглощается падением напряжения в дросселе. Таким образом, этот процесс позволяет достигнуть почти нулевого значения в напряжении сварочной цепи. Благодаря тому, что возникает дуга, величина сварочного тока становится меньше. Этот процесс позволяет уменьшить ЭДС дросселя, который направлен против напряжения трансформатора. Таким образом устанавливается рабочее напряжение. Оно меньше, чем напряжение холостого хода, но его достаточно для постоянного горения дуги.

Принцип работы сварочного трансформатора позволяет увеличить силу сварочного тока: просто нужно увеличить зазор между подвижной и неподвижной частью магнитного провода дросселя. Этот процесс происходит так: когда увеличивается зазор, то сопротивление магнитного провода также увеличивается. Это ведет к уменьшению магнитного потока, соответственно, ЭДС самоиндукции катушки дросселя и индуктивное сопротивление уменьшаются. Все это приводит к тому, что сварочный ток увеличивается.

Виды сварочных трансформаторов – постараемся не запутаться

Разделяют виды сварочных трансформаторов по типам сварки, а также по фазовому регулированию. По первому признаку можно выделить трансформаторы для ручной дуговой сварки и для автоматической сварки под флюсом. По второму признаку классификация шире. Они разделяются на:

  • сварочные трансформаторы с нормальным магнитным рассеянием амплитудного регулирования (в нем есть либо дроссель с воздушным зазором, либо дроссель насыщения);
  • с увеличенным магнитным рассеянием амплитудного регулирования (в нем есть подвижные, разнесенные, реактивные обмотки, подвижные магнитные или подмагниченные при помощи шунта, конденсатор или импульсивный стабилизатор);
  • тиристорные сварочные трансформаторы (они могут быть с импульсивной стабилизацией или подпиткой).

Это общая классификация. Но стоит разобраться в видах сварочных трансформаторов, основным различием которых является фазовое регулирование. Сварочные трансформаторы переменного тока с амплитудным регулированием режима сварки делают это при помощи изменения сопротивления или перемены напряжения холостого хода. При этом синусоидальная форма переменного тока передается без искажения.

Трансформаторы с тиристорным регулированием состоят из двух частей: силового трансформатора и тиристорного регулятора фаз. Они размещены или в первичной, или во вторичной цепи вместе со встречными и параллельными тиристорами, а также с системой управления. Основной принцип регулирования фаз заключается в преобразовании тока, из синусоидального в знакопеременные импульсы. Их длительность определяется при помощи того самого тиристора. При регулировании дуга начинает неустойчиво гореть. Для того чтобы ее горение было устойчивым, используют импульсивную стабилизацию или дополнительную подпитку.

Также среди видов аппаратов можно выделить интересные модели, например, тороидальный сварочный трансформатор. Если большинство схем собирают в виде букв «Ш» или «П», то этот агрегат будет в виде бублика. Считается, что возможность получить высокую мощность при относительно небольшом размере – основное достоинство такой модели. А вот еще одну находку – сварочный трехфазный трансформатор, удобно использовать в тех случаях, когда требуется многоступенчатое понижение тремя однофазными приборами, только он намного компактнее и удобнее в управлении.

Мы много говорим о переменном токе, а вот сварочный трансформатор постоянного тока удобнее и стабильнее, хоть и требует некоторых знаний от сварщика в плане эксплуатации. Такие аппараты довольно дорогие, сложное устройство повышает массу агрегата. Но принцип работы расширяет область применения, например, можно работать с нержавейкой или цветметом. Однако для этого приспособления нужны особые электроды. И понятно, что не стоит приобретать такие устройства как бытовые сварочные трансформаторы, уж очень денежно и замысловато.

Для постоянного тока устройство трансформатора намного сложнее, больше и дороже, но это компенсируется его удобством и функциональностью.

Трансформатор для контактной сварки – техника безопасности

Опасен может быть даже трансформатор для сварки проводов, который не отличается большими значениями токов. При работе необходимо соблюдать максимальную осторожность и не забывать о технике безопасности. Сначала следует убедиться, что помех для сварки нет, то есть отсутствует оргтехника, телевизор, другие кабели, и даже наличие слуховых устройств может стать помехой для безопасной эксплуатации сварочного трансформатора.

Далее следует обезопасить себя и других людей, которые будут работать с трансформатором, от поражения током. Не редки случаи смертельного исхода от травм, полученных разрядом тока. Соответственно, в работе необходимо использовать резиновые коврики, само изделие и прочие предметы, которые могут находиться под напряжением, брать в руки не стоит. Также нужно следить за тем, чтобы одежда всегда оставалась сухой. Помимо этого, работать во влажном помещении или при влажной погоде запрещено!

Затем стоит позаботиться о том, чтобы помещение, где происходит сварка, хорошо проветривалось. Это необходимо для того, чтобы защитить органы дыхания. Ведь во время сварки образуется едкий дым и пыль. Это основные правила, которые необходимо учитывать при работе со сварочным транзистором. Помимо этого, специалист по сварочным работам должен хорошо ориентироваться в конструкции своих агрегатов, чтобы в случае неисправности можно было оперативно осуществить ремонт сварочных трансформаторов.

Ремонт сварочных трансформаторов – что мы сможем сами?

Основной проблемой, как правило, бывает самопроизвольное отключение аппарата, причиной которого может быть замыкание в цепи или между винтиками катушек. Починить довольно просто – отключить от сети, найти неисправность и заменить нужный элемент (конденсат, изоляцию или прочие детали). Если трансформатор сильно гудит, то это может стать причиной перегрева в дальнейшем. Причиной такого громкого шума могут стать слабые болты, стянутые листовые элементы. Исправить эту проблему довольно просто – необходимо подтянуть все виды болтов и гайки, посмотреть ситуацию с сердечником и при необходимости ее исправить.

Читайте также:
Чем отличается эмаль от краски: подробное сравнение составов

Еще один недуг – чрезмерный нагрев. Причиной может быть неверная установка значений сварочного тока. Если вовремя не устранить эту проблему, то может сгореть вся изоляция, и аппарат придет в негодность, а также потребуется его достаточно продолжительный ремонт. Лучше всего соблюдать оптимальные значения сварочного тока, тогда перегрев не страшен. Произошел обрыв сварочной дуги и не получается зажечь ее снова – эта проблема известна большинству тех, кто занимается сваркой. В этот момент дуга представляет собой лишь искорки. Скорей всего, произошел пробой обмотки высокого напряжения.

Расчет сварочного трансформатора для самостоятельной сборки

Соединение металлических деталей электрической дугой известно уже более 120 лет, но немногие знают все тонкости этого процесса, что очень важно для того, чтобы сделать расчет сварочного трансформатора для простейшего аппарата и полуавтомата.

1 На чем базируется расчет сварочного трансформатора?

Прежде, чем разбираться в формулах, давайте рассмотрим принцип действия простейшего аппарата для дуговой сварки. Основой такого агрегата является понижающий трансформатор, позволяющий изменить входящее напряжение, соответствующее в быту 220 В, на более низкое, до 60 В для так называемого холостого хода или, иначе, состояния покоя. То, какие виды электродов можно будет использовать с устройством, зависит от силы тока, которая должна быть в пределах 120-130 А для наиболее популярного трехмиллиметрового диаметра расходного материала.

И вот здесь как раз требуются расчеты, поскольку, если стержень электрода плавится при определенной силе тока, значит, она будет в той же степени нагревать и сердечник трансформатора, а также проволоку обмотки. Следовательно, для того, чтобы узнать оптимальную мощность трансформатора, нам нужно сначала вычислить рабочее напряжение, ориентируясь на рабочую силу тока. Для этого существует формула U2 = 20 + 0,04I2, где U2 – напряжение на вторичной обмотке, а I2 – выдаваемый аппаратом максимальный сварочный ток.

Теперь вернемся к сердечнику, который не зря так называется, поскольку является сердцем трансформатора, как самого простого, так и полуавтомата. Он составляется из металлических пластин, которые способны выдержать определенную нагрузку по мощности тока. Это допустимое значение зависит от размеров сердечника и называется габаритной мощностью, которую можно найти, зная значение напряжения холостого хода. Последнее высчитывается по формуле Uхх = U2S, где S – площадь сечения провода вторичной обмотки. Зависимость этой площади от диаметра проводника определяем по формуле S = πd 2 /4, или по следующим таблицам:

Допустимые токовые нагрузки на провода с медными жилами

Допустимые токовые нагрузки на провода с алюминиевыми жилами

2 Расчет для сварочного трансформатора по формулам и онлайн

Итак, у нас есть все необходимые параметры для того, чтобы вычислить габаритную мощность сердечника. Далее работаем по формуле Pгаб = UххI2cos(φ)/η, где φ – угол смещения фаз между напряжением и током (можно принять величину 0.8), а η – КПД (принимаем 0.7). Остается найти допустимую мощность, которую выдержит аппарат при длительной работе. При этом учитываем, что коэффициент продолжительности работы (обозначим его ПР) составляет около 20 % от времени подключения трансформатора к сети.

Поэтому считаем следующим образом: Pдл = U2I2(ПР/100) 0.5 0.001, или, иначе Pдл = U2I2(20/100) 0.5 0.001, что соответствует Pдл = U2I20.00045. В целом продолжительность работы и сила сварочного тока практически не связаны. В большей степени на время дугового режима влияет сечение проволоки обмотки и качество изоляции, а также то, насколько плотно и, главное, ровно, уложены витки. Следовательно, теперь мы можем узнать электродвижущую силу одного витка в вольтах, используя формулу E = Pдл0.095 + 0.55.

Далее, получив результат эмпирической зависимости по последней формуле, высчитываем оптимальное количество витков для обмотки, как первичной, так и вторичной. Для той и другой используем две формулы, соответственно N1 = U1/E, где U1 – входящее напряжение сети, а N2 = U2/E. Сила сварочного тока регулируется увеличением или уменьшением расстояния между первичной и вторичной обмотками: чем оно больше, тем ниже мощность на выходе. Тем, кто делает приведенный расчет с целью самостоятельной сборки трансформатора, а не для приобретения готового сварочного полуавтомата, понадобится еще и вычисление габаритов сердечника.

Площадь сечения металла определяется по формуле S = U210000/(4.44fN2Bm), где f – промышленная частота тока (принимаем за 50 Гц), Bm – индукция магнитного поля (принимаем за 1.5 Тл). Теперь можно узнать ширину стальной пластины в пакете трансформатора: a = (100S /(p1kc)) 0.5 , где за p1 принимаем диапазон значений 1.8-2.2 (рекомендуется среднее), kс – коэффициент заполнения стали (соответствует 0.95-0.97).

Исходя из значения ширины пластины, выясняем толщину пакета пластин плеча, для чего используем формулу b = ap1, а затем и ширину окна магнитопровода c = b/p2, где p2 имеет диапазон значений 1–1.2 (рекомендуется максимальное). К слову, если уж мы взялись измерять габариты, вспомним про коэффициент заполнения стали, который обозначает промежутки между пластинами. С учетом этого показателя площадь сечения сердечника будет несколько иной, поэтому назовем ее измеряемой величиной и определим заново. Формула для этого потребуется следующая: Sиз = S/kc. В большинстве случаев эти расчеты не нужны при наличии онлайн-калькулятора.

3 Как сделать расчет самодельного тороидального сварочного трансформатора?

По сути, тор – это объемное геометрическое тело, хотя в математике бытует понятие “поверхность”. То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор – это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид.

Читайте также:
Унитаз с функцией биде вместе: фото, цена

Основная его характеристика – высокий КПД при небольших, в сравнении с другими типами сердечников, размерах. Что и является основополагающим критерием для предпочтения данной формы самодельных трансформаторов. Основное отличие тороидального трансформатора от прочих – прокладка только межобмоточной изоляции наряду с внешней. Межслоевая не делается по той простой причине, что витки провода, проходя сквозь отверстие тора, создают дополнительную толщину внутреннего диаметра, что исключает использование лишних слоев изоляции.

Именно это значительно усложняет сборку тороида, и потому он редко устанавливается в корпусе полуавтомата, где чаще можно увидеть стержневые сердечники. Чтобы не возникали пробивания, применяются провода с повышенной прочностью изоляционного покрова. В качестве прокладки можно взять лавсан или ленту ФУМ (фторопластовую).

Для определения габаритной мощности сердечника, выполненного в виде тора, нам достаточно узнать две площади: окна и сечения.

Первую вычисляем по формуле Sокна = 3.14(d 2 /4), где d – внутренний диаметр тора. Вторая формула выглядит следующим образом: Sсеч = h((D-d)/2), здесь D – внешний диаметр “бублика”. Далее остается только рассчитать габаритную мощность трансформатора, для чего используем простейший способ умножения двух получившихся ранее результатов. Иными словами, Pгаб[Вт] = Sокна[кв.см] * Sсеч[кв.см]. Дальнейшие вычисления ориентируем согласно таблице:

Pгаб ω1 ω2 (А/мм 2 ) η
До 10 41/S 38/S 4.5 0.8
10-30 36/S 32/S 4 0.9
30-50 33.3/S 29/S 3.5 0.92
50-120 32/S 28/S 3 0.95

Здесь Pгаб – габаритная мощность трансформатора, ω1 – число витков на вольт (для стали Э310, Э320, Э330), ω2 – число витков на вольт (для стали Э340, Э350, Э360), –допустимая плотность тока в обмотках, ŋ – КПД трансформатора.

Определив количество витков на каждый вольт для сердечника из той или иной стали, можем узнать, сколько витков всего нужно будет выполнить при изготовлении трансформатора. Для этого используются две формулы, для первичной и вторичной обмотки соответственно: N1 = ω1U1 и N2 = ω2U2. Далее следует учесть некоторое падение напряжения, возникающее из-за небольшого сопротивления в обмотках, которое, впрочем, в тороиде довольно незначительное.

Для этого увеличиваем количество витков вторичной обмотки на 3 % (в других типах сердечников понадобилось бы больше): N2_компенс = 1.03N2. Для того чтобы узнать диаметр проволоки, используем формулу для первой обмотки d1 = 1.13(I1/∆) 0.5 и для второй: d2 = 1.13(I2/∆) 0.5 . При этом результаты округляем в большую сторону и выбираем ближайшие доступные провода.

Схема сварочного трансформатора – как стать электриком за несколько минут?

Схема сварочного трансформатора должна быть знакома тем, кто планирует воспользоваться электрической сваркой. Благодаря этому аппарату, можно производить ручную дуговую падающую сварку. Обсудим его устройство.

Схема сварочного трансформатора: зачем ее рассчитывать?

Любой трансформатор для контактной точечной сварки характеризуется двумя главными параметрами – выходным напряжением и током. А в основные функции этого аппарата входит регулирование сварочного тока и ограничение тока короткого замыкания. Стоит знать, что для того чтобы получить падающую характеристику, а также ограничение тока короткого замыкания, необходимо во время сварки последовательно с дугой включить большое сопротивление.

Оптимальным вариантом является индуктивное сопротивление. Это самый экономичный способ в данном случае. Именно такое сопротивление можно создать при помощи отдельной дроссельной катушки, если ее включить последовательно с дугой, или несколькими дроссельными катушками, если их объединить в одно целое с самим трансформатором, который необходимо также последовательно включить с дугой. Еще один вариант – увеличить внутреннее магнитное рассеяние самого трансформатора (здесь катушки не используют).

При планировании работы хорошим тоном считается производить расчет прибора. По входным значениям напряжения и силы тока вычисляют минимальную мощность, так можно узнать, чего ждать от вашего помощника. Как рассчитать сварочный трансформатор, знают инженеры, а если вы не планируете самостоятельно изготавливать эти механизмы, то можно воспользоваться калькуляторами в интернете, или готовыми данными в инструкции к каждому прибору.

Принцип работы сварочного трансформатора – функции дросселя

Устройство сварочного трансформатора зависит от главной детали – дросселя. Он позволяет регулировать сварочный ток и работает так: когда дуга при коротком замыкании возбуждается, ток, пройдя через обмотку из медного дросселя, создает мощнейший магнитный поток, который наводит в дросселе электродвижущую (ЭДС) силу самоиндукции. Именно эта сила направлена против напряжения сварочного трансформатора.

Стоит учитывать, что при вторичном напряжении трансформатора оно полностью поглощается падением напряжения в дросселе. Таким образом, этот процесс позволяет достигнуть почти нулевого значения в напряжении сварочной цепи. Благодаря тому, что возникает дуга, величина сварочного тока становится меньше. Этот процесс позволяет уменьшить ЭДС дросселя, который направлен против напряжения трансформатора. Таким образом устанавливается рабочее напряжение. Оно меньше, чем напряжение холостого хода, но его достаточно для постоянного горения дуги.

Принцип работы сварочного трансформатора позволяет увеличить силу сварочного тока: просто нужно увеличить зазор между подвижной и неподвижной частью магнитного провода дросселя. Этот процесс происходит так: когда увеличивается зазор, то сопротивление магнитного провода также увеличивается. Это ведет к уменьшению магнитного потока, соответственно, ЭДС самоиндукции катушки дросселя и индуктивное сопротивление уменьшаются. Все это приводит к тому, что сварочный ток увеличивается.

Виды сварочных трансформаторов – постараемся не запутаться

Разделяют виды сварочных трансформаторов по типам сварки, а также по фазовому регулированию. По первому признаку можно выделить трансформаторы для ручной дуговой сварки и для автоматической сварки под флюсом. По второму признаку классификация шире. Они разделяются на:

  • сварочные трансформаторы с нормальным магнитным рассеянием амплитудного регулирования (в нем есть либо дроссель с воздушным зазором, либо дроссель насыщения);
  • с увеличенным магнитным рассеянием амплитудного регулирования (в нем есть подвижные, разнесенные, реактивные обмотки, подвижные магнитные или подмагниченные при помощи шунта, конденсатор или импульсивный стабилизатор);
  • тиристорные сварочные трансформаторы (они могут быть с импульсивной стабилизацией или подпиткой).
Читайте также:
Унитаз с функцией биде вместе: фото, цена

Это общая классификация. Но стоит разобраться в видах сварочных трансформаторов, основным различием которых является фазовое регулирование. Сварочные трансформаторы переменного тока с амплитудным регулированием режима сварки делают это при помощи изменения сопротивления или перемены напряжения холостого хода. При этом синусоидальная форма переменного тока передается без искажения.

Трансформаторы с тиристорным регулированием состоят из двух частей: силового трансформатора и тиристорного регулятора фаз. Они размещены или в первичной, или во вторичной цепи вместе со встречными и параллельными тиристорами, а также с системой управления. Основной принцип регулирования фаз заключается в преобразовании тока, из синусоидального в знакопеременные импульсы. Их длительность определяется при помощи того самого тиристора. При регулировании дуга начинает неустойчиво гореть. Для того чтобы ее горение было устойчивым, используют импульсивную стабилизацию или дополнительную подпитку.

Также среди видов аппаратов можно выделить интересные модели, например, тороидальный сварочный трансформатор. Если большинство схем собирают в виде букв “Ш” или “П”, то этот агрегат будет в виде бублика. Считается, что возможность получить высокую мощность при относительно небольшом размере – основное достоинство такой модели. А вот еще одну находку – сварочный трехфазный трансформатор, удобно использовать в тех случаях, когда требуется многоступенчатое понижение тремя однофазными приборами, только он намного компактнее и удобнее в управлении.

Мы много говорим о переменном токе, а вот сварочный трансформатор постоянного тока удобнее и стабильнее, хоть и требует некоторых знаний от сварщика в плане эксплуатации. Такие аппараты довольно дорогие, сложное устройство повышает массу агрегата. Но принцип работы расширяет область применения, например, можно работать с нержавейкой или цветметом. Однако для этого приспособления нужны особые электроды. И понятно, что не стоит приобретать такие устройства как бытовые сварочные трансформаторы, уж очень денежно и замысловато.

Для постоянного тока устройство трансформатора намного сложнее, больше и дороже, но это компенсируется его удобством и функциональностью.

Трансформатор для контактной сварки – техника безопасности

Опасен может быть даже трансформатор для сварки проводов, который не отличается большими значениями токов. При работе необходимо соблюдать максимальную осторожность и не забывать о технике безопасности. Сначала следует убедиться, что помех для сварки нет, то есть отсутствует оргтехника, телевизор, другие кабели, и даже наличие слуховых устройств может стать помехой для безопасной эксплуатации сварочного трансформатора.

Далее следует обезопасить себя и других людей, которые будут работать с трансформатором, от поражения током. Не редки случаи смертельного исхода от травм, полученных разрядом тока. Соответственно, в работе необходимо использовать резиновые коврики, само изделие и прочие предметы, которые могут находиться под напряжением, брать в руки не стоит. Также нужно следить за тем, чтобы одежда всегда оставалась сухой. Помимо этого, работать во влажном помещении или при влажной погоде запрещено!

Затем стоит позаботиться о том, чтобы помещение, где происходит сварка, хорошо проветривалось. Это необходимо для того, чтобы защитить органы дыхания. Ведь во время сварки образуется едкий дым и пыль. Это основные правила, которые необходимо учитывать при работе со сварочным транзистором. Помимо этого, специалист по сварочным работам должен хорошо ориентироваться в конструкции своих агрегатов, чтобы в случае неисправности можно было оперативно осуществить ремонт сварочных трансформаторов.

Ремонт сварочных трансформаторов – что мы сможем сами?

Основной проблемой, как правило, бывает самопроизвольное отключение аппарата, причиной которого может быть замыкание в цепи или между винтиками катушек. Починить довольно просто – отключить от сети, найти неисправность и заменить нужный элемент (конденсат, изоляцию или прочие детали). Если трансформатор сильно гудит, то это может стать причиной перегрева в дальнейшем. Причиной такого громкого шума могут стать слабые болты, стянутые листовые элементы. Исправить эту проблему довольно просто – необходимо подтянуть все виды болтов и гайки, посмотреть ситуацию с сердечником и при необходимости ее исправить.

Еще один недуг – чрезмерный нагрев. Причиной может быть неверная установка значений сварочного тока. Если вовремя не устранить эту проблему, то может сгореть вся изоляция, и аппарат придет в негодность, а также потребуется его достаточно продолжительный ремонт. Лучше всего соблюдать оптимальные значения сварочного тока, тогда перегрев не страшен. Произошел обрыв сварочной дуги и не получается зажечь ее снова – эта проблема известна большинству тех, кто занимается сваркой. В этот момент дуга представляет собой лишь искорки. Скорей всего, произошел пробой обмотки высокого напряжения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: