Современные установки пожаротушения тонкораспыленной водой. Виды, принцип работы, плюсы и минусы

Пожаротушение тонкораспыленной водой: особенности проектирования

Системы пожаротушения тонкораспыленной воды (СП ТРВ) позволяют максимально эффективно использовать все преимущества воды как огнетушащего вещества, не имея при этом большинства недостатков классических систем. Ввиду чего СП ТРВ на сегодня одни из самых востребованных.

Согласно СП 5.13130.2009 установка автоматических систем пожаротушения тонкораспыленной водой должна производиться в помещениях следующих типов:

  • закрытые паркинги, в том числе и многоуровневые;
  • склады, производственные помещения;
  • объекты культуры: галереи, театры, выставочные павильоны;
  • архивы, библиотеки;
  • офисы, гостиницы, торговые залы и другие.

Такая система призвана обеспечить эффективное тушение пожаров классов класса А, В, С а также помещений, в которых расположены электроустановки под напряжением до 1000 В. Правила проектирования и монтажа автоматических СП ТРВ регламентируются 69-ФЗ от 21.12.1994 г., 123-ФЗ от 22.07.2008, НПБ 88-2001, СП 5.13130.2009 и рядом других нормативных документов.

Принцип действия системы пожаротушения тонкораспыленной водой

Принцип работы систем пожаротушения тонкодисперсной водой заключается в следующем: при возникновении одного или нескольких очагов возгорания срабатывает автоматическая система сигнализации и в помещение распыляется вода. Диаметр капли тонкораспыленной воды очень мал – около 100 мкм.

В результате в очаге возгорания образуется водяной туман. За счет высокой температуры вода закипает, образуя облако пара, перекрывающего доступ кислорода к огню. Благодаря этому пожар ликвидируется менее чем за минуту. Водяное облако висит в помещении еще около 15 минут, что предотвращает возможность повторного возгорания. Кроме того, капли тонкораспыленной воды поглощают часть твердых частиц дыма, что снижает риск высокого задымления помещения.

Преимущества

СП ТРВ имеют качественные отличия от классических:

  • во-первых, большую площадь покрытия по сравнению с системами разбрызгивания или подачи воды струей, при этом расход воды крайне низок – до 1,5 л/м²;
  • во-вторых, на эффективность тушения не влияет количество источников возгорания и их местонахождение в защищаемой зоне;
  • в-третьих, система не допускает тления и повторного возгорания;
  • в-четвертых, система проста в монтаже и эксплуатации и не зависит от внешних источников энергии;
  • в-пятых, вода и ее газо-жидкостная смесь – нетоксичное вещество;
  • в-шестых, распыление воды способствует эффективному дымоудалению.

Установки пожаротушения тонкораспыленной водой

Упрощенно схема установки пожаротушения тонкораспыленной водой представляет собой резервуар с водой, связанный с баллоном газа-вытеснителя и с оросителями, находящимися непосредственно в зоне защиты от пожара. При реагировании на возгорание запорно-пусковое устройство на баллоне с газом срабатывает и вытеснитель, проходя через рукав высокого давления, попадает в резервуар, где образует с водой газо-жидкостную смесь. Эта смесь через трубопровод попадает к оросителям.

Разделяют два типа установок: высокого и низкого давления. Установки высокого давления характеризуются тем, что нужная дисперсность достигается механическим путем – с помощью насосов высокого давления или баллонов с азотом. В установках низкого давления формируется газо-жидкостная смесь, в которую добавляются огнетушащие вещества. Предпочтительной считается установка низкого давления с раздельным хранением пускового запаса газа.

Особенности проектирования и монтажа

При монтаже установок тонкодисперсного распыления следует избегать часто встречающихся ошибок, которые допускают непрофессионалы. Эти недочеты могут повлечь за собой либо неоправданное усложнение системы, снижение эффективности ее работы, либо неправильное функционирование всей системы в целом и ее поломку.

Наиболее частые ошибки:

  • установка меньшего количества установок пожаротушения или баллонов с пусковым газом, чем того требует площадь помещения;
  • применение неоцинкованных труб для трубопровода;
  • размещение резервуаров с водой слишком далеко от оросителей, размещение баллонов с газом слишком далеко от резервуаров;
  • нерациональное разделение защищаемого помещения на секции пожаротушения;
  • размещение резервуаров с водой слишком низко.

Для защиты нескольких или одного небольшого помещении используются автономные установки пожаротушения тонкораспыленной водой. Для помещений большой площади (более 1000 м2) имеет смысл организовать тушение по зонам с использованием распределительных устройств и станции хранения газа-вытеснителя.

Чтобы избежать ошибок при проектировании и установке модулей пожаротушения тонкораспыленной водой, обратитесь к квалифицированным специалистам. Компания Альянс «Комплексная безопасность» оказывает полный комплекс услуг, связанных с проектированием, монтажом и обслуживанием систем пожаротушения тонкораспыленной водой, а также готова оказать консультационную помощь по обозначенным вопросам.

Особенности пожаротушения тонкораспыленной водой

Среди всех самосрабатывающих установок пожаротушения наиболее безопасны водные системы. Их можно использовать не только в промышленности, но и в местах массового скопления людей.

  1. Модули тонкораспыленной воды
  2. Описание
  3. Область применения
  4. Технические характеристики
  5. Разновидности
  6. Автоматическая
  7. Модульная
  8. Принцип работы
  9. Правила подключения к трубопроводу
  10. Преимущества и недостатки
  11. Техобслуживание и перезарядка
  12. Условия хранения и срок годности
  13. Стоимость
  14. Нормативно-законодательная база
  15. Выводы

Модули тонкораспыленной воды

Пожаротушение тонкораспыленной водой (ТРВ) – довольно популярный вид систем. С одной стороны, установка использует самое дешевое ОТВ (огнетушащее вещество), с другой – эффективность действия воды повышена за счет нестандартного применения.

Описание

Модуль ТРВ состоит из следующих элементов:

  1. Баллон с ОТВ. В качестве огнегасящего вещества используется вода.
  2. Баллон с вытесняющим газом. Подсоединен к емкости с водой. Чаще всего используется сжиженный диоксид углерода.
  3. Подводящий трубопровод. Соединяет баллон с ОТВ и модуль-распылитель.
  4. Распылитель.
  5. Запорно-пусковой механизм. Отделяет пространство баллона от пространства труб.
Читайте также:
Французская мебель в спальне

Существуют также централизованные системы, в которых не используется вытесняющий газ – вода проводится к насадкам напрямую при помощи трубопровода.

Тем не менее такие установки непопулярны из-за отсутствия водоподготовки, осадок быстро забивает насадку при регулярном использовании.

В ждущем режиме вода в баллоне находится без давления, доступ ОТВ в подводящую магистраль закрыт, как и доступ сжиженного газа в баллон с веществом.

В случае пожара электрический сигнал с датчика поступает на запорно-пусковой узел, открывая его. Сначала открывается доступ газа в емкость с водой. В баллоне появляется избыточное давление, и ОТВ под напором переходит в распылитель. Там вода проходит через насадку-сетку, превращаясь в «туман».

Пожаротушение тонкораспыленной водой

Комплект модуля, как правило, включает следующие элементы:

  • руководство по эксплуатации;
  • паспорт устройства (может быть объединен с руководством эксплуатации);
  • сам модуль, состоящий из двух баллонов – с ОТВ и газом;
  • магистрали и соединительные трубопроводы;
  • распылители с насадками;
  • комплектующие: прокладки, гайки, болты и пр.

Область применения

Тушение тонкораспыленной водой предназначено для ликвидации пожаров классов А (твердые материалы) и В (жидкости). Некоторые модели устройств подходят для тушения возгораний категории Е (оборудование под напряжением до 1 000 В).

У ТРВ есть одно интересное свойство – миниатюрные капли воды испаряются еще в воздухе, практически не оседая на поверхности. Таким образом, вещество почти не вредит имуществу. За счет этого качества ТРВ часто используются в местах хранения ценностей, например:

  • музеи;
  • отделения банков;
  • библиотеки;
  • архивы.

При тушении хрупких и ценных материалов взвесь капель не навредит имуществу.

Технические характеристики

К техническим параметрам модуля относятся следующие показатели:

  1. Время подачи вещества. Составляет от 20 до 35 секунд.
  2. Расход воды. В среднем колеблется в пределах 6–12 литров в секунду.
  3. Защищаемая площадь одного модуля – около 100 м2.
  4. Время срабатывания установки. Составляет 5 секунд.
  5. Масса сжиженного газа – до 30 кг.
  6. Вес ОТВ в баллоне – 240 кг.
  7. Полный вес не заправленного модуля – от 220 кг.
  8. Рабочее давление аппарата – 1,4 МПа.
  9. Объем баллонов воды и газа – 250 и 50 литров соответственно.

Разновидности

Существует два типа систем ТРВ. Оба работают автономно. Тем не менее установки снабжают ручной системой старта – на случай, если самозапуск не сработает. Такой шаг уменьшает инерционность приборов.

Автоматическая

Представляет собой централизованную систему. Отличается от прочих водяных установок насадками-сетками. Вещество подается в магистрали из водопровода здания, что повышает шансы на тушение крупных возгораний.

Плюс таких систем в их безопасности, даже по сравнению с остальными водными установками. Устройство применяется в больницах, детских садах, яслях и домах престарелых.

Модульная

Под модулем понимается совокупность технических средств, объединенных для борьбы с пожаром. Из таких механизмов собирается установка, подчиняющаяся одной системе старта.

Модуль пожаротушения тонкораспыленной водой «ТРВ-9М Ураган»

На заметку. Модуль тушения тонкораспыленной водой лучше всего подходит для защиты одного небольшого помещения. Часто приборы устанавливают в местах хранения ценных вещей. При этом в остальных помещениях здания может работать дренчерная или спринклерная системы.

Принцип работы

Централизованная система с насадками-сетками работает так же, как и спринклерные или дренчерные установки. Иначе выглядит работа модуля ТРВ. Устройство состоит из следующих элементов:

  1. Баллон с ОТВ. Вода внутри находится без давления.
  2. Баллон с диоксидом углерода. Закрыт, подсоединен к емкости с ОТВ с помощью специального трубопровода.
  3. Датчики тепла или дыма. Выполняют роль побудительной системы.
  4. Подводящий трубопровод. Представляет собой трубу, идущую от баллона с ОТВ к оросителям.
  5. Магистраль. Сюда в первую очередь поступает вода, после чего распространяется по разбрызгивателям.
  6. Распылители со специальными насадками-сетками. За счет прохождения воды под напором сквозь мелкую сетку получается «туман».

Установка пожаротушения тонкораспыленной водой

При пожаре температура в помещении поднимается, появляется дым. Датчики считывают данные показатели и дают сигнал работы модулю. В этот момент открывается заглушка баллона с углекислотой, который соединен с емкостью с ОТВ. По трубопроводу газ поступает в баллон с водой, создавая избыточное давление.

В итоге ОТВ выходит под напором в подводящий трубопровод, попадает в магистраль, а затем в распылители. Проходя через специальную насадку, вода превращается во взвесь капель.

Принцип работы вещества основан на двойном действии:

  1. Охлаждение. «Туман» из частиц воды испаряется, поглощая тепло, из-за чего температура в очаге пожара падает.
  2. Осаждение продуктов горения. Капли влаги тянут соединения веществ вниз, к полу.

Правила подключения к трубопроводу

В ходе установки и использования модуля следует придерживаться нескольких правил:

  • размещение модулей на объекте проводится в соответствии с заранее подготовленным проектом;
  • насадки на ветвях магистралей располагаются в соответствии с руководством использования модулем;
  • длина подводящего трубопровода не должна превышать 20 метров;
  • распределительная магистраль устанавливается на высоте от 350 до 400 см от пола;
  • расстояние между креплениями распределительного трубопровода не должно превышать 300 см;
  • число изгибов подводящего водопровода под углом 90 градусов не должно превышать 4;
  • максимальное расстояние от насадок до креплений распределительного трубопровода не должно быть более 50 см;
  • трубопровод прокладывают с уклоном в 0,01 градуса в сторону крайней насадки.
Читайте также:
Что такое Заклепка? Сфера применения: виды и технические характеристики и крепления +Видео

Преимущества и недостатки

К плюсам модулей пожаротушения тонкораспыленной водой относятся:

  1. Безопасность. Вода не вредит людям, а также осаждает продукты горения, что помогает очистке воздуха в помещении.
  2. Отсутствие вреда имуществу. По сравнению с водяными и пенными системами пожаротушения данная установка наносит гораздо меньше ущерба материалам за счет тонкораспыленной воды. Взвесь капель быстро испаряется, оставляя тонкий слой вещества на поверхностях.
  3. Эффективность. При использовании система улучшает видимость и снижает температуру в помещении.

К недостаткам модуля можно отнести несколько факторов:

  1. Ограничение по рабочей температуре. Так как в качестве ОТВ модуля используется вода, то система не будет работать при отрицательных температурах. Производитель заявляет диапазон рабочих температур от +5 ℃ до +50 ℃.
  2. Ограниченность в применении. Тонкораспыленную воду можно использовать на возгораниях всего двух классов – А (твердые материалы) и В (жидкости).
  3. Цена модулей тонкораспыленной воды довольно высока.

Модуль пожаротушения тонкораспыленной водой в действии

Техобслуживание и перезарядка

Обслуживание модулей ТРВ проводится с разной периодичностью, в зависимости от сложности манипуляций:

  • ежедневно: осмотр деталей на наличие механических повреждений, проверка целостности пломб;
  • ежегодно: замер объема воды и сжиженного газа в баллонах;
  • раз в два года: перезаряд ОТВ, проверка работоспособности ЗПУ;
  • раз в пять лет: переосвидетельствование газового баллона, проверка исправности предохранительного клапана.

Условия хранения и срок годности

Желательно хранить модули в заводской упаковке при рабочей температуре (от +5 ℃ до +50 ℃). Можно складывать модули друг на друга высотой не более 5 рядов.

Срок годности устройства определяется изготовителем и указан в руководстве пользователя. Обычно этот период не превышает 10–12 лет при соблюдении требований к техобслуживанию.

Стоимость

Цена установки пожаротушения тонкораспыленной водой будет зависеть от типа системы – модульного или централизованного. Средняя стоимость одного модуля составляет порядка 20 000 рублей. В процессе проектирования системы производится расчет количества приборов.

Для создания централизованной установки нужно проложить магистрали под потолком и подключить их к водопроводу здания. Точная стоимость зависит от площади помещения, наличия источника воды и прочих факторов.

Плюс систем ТРВ в их доступности: купить модуль можно в любом интернет-магазине, а установкой приборов занимаются почти все пожарные компании.

Нормативно-законодательная база

Модуль ТРВ сопровождается руководством по эксплуатации и паспортом. Все нормы и требования относительно производства, ТО и сроков службы определяют следующие документы:

В качестве дополнительных сопроводительных документов выступают сертификаты из центров сертификации.

Выводы

Тонкораспыленное пожаротушение, несмотря на узкую сферу применения, обладает уникальным механизмом действия. Взвесь капель воды снижает температуру очага возгорания и прибивает к земле продукты горения, одновременно с этим нанося минимальный ущерб материалам.

Такие установки все еще не рекомендованы для тушения обесточенной техники и любых приборов, плохо переносящих влагу. Однако модули могут применяться в людных местах, так как вещество полностью безопасно для человека.

Современные установки пожаротушения тонкораспыленной водой. Виды, принцип работы, плюсы и минусы

Системы пожаротушения тонкораспыленной водой — эффективный способ устранения очагов возгорания класса А и В. Они отличаются безопасностью, поэтому используются при тушении 90% всех пожаров. В статье рассмотрены: принцип работы АУП-ТРВ, преимущества и особенности, виды установок.

  • 1. Что значит такая система тушения пожаров?
  • 2. Как работают подобные модули?
  • 3. Где и на каких объектах распространяют?
  • 4. Плюсы и минусы установок
  • 5. Разновидности систем

В традиционных системах водного пожаротушения установлен механизм для формирования водяных капель с размером от 0.5 до 2 мм. Но в современных системах этот размер не превышает 100 мкм.

  • В первом случае для тушения огня используется 35% воды.
  • Во втором — 99%.

Поэтому тонкораспыленная вода обладает проникающей и охлаждающей способностью, что способствует быстрому и эффективному устранению огня на больших территориях.

Принцип действия усовершенствованных комплексов следующий:

  1. 1. При возникновении чрезвычайной ситуации срабатывают датчики дыма, пламени и тепла. Сигнал от прибора поступает к запорно-пусковому элементу.
  2. 2. Вода из резервуара по рукаву высокого давления перемещается к трубопроводу, поступает к оросителям.
  3. 3. Формируется водяной туман из смеси воды и газа. Он проникает во все места помещения. После передачи сигнала датчиками об устранении пожара или низком уровне вытесняющего газа, распыление заканчивается.
  4. 4. Туман держится в воздухе 15 минут, а затем оседает.

Основное назначение АУП-ТРВ — тушение пожаров класса А и В. Системы способны ликвидировать горение:

  • твердых веществ с тлением и без него;
  • жидких (неводорастворимых и водорастворимых);
  • сжижаемых твердых материалов.
Читайте также:
Строительство по канадской технологии преимущества и недостатки сравнительно молодой методики

В нормативных документах СП 5.13130.2009 по проектированию автоматических систем пожаротушения указаны объекты их применения. Комплексы с тонкораспыленной водой устанавливаются:

  • в закрытых одно-или многоуровневых паркингах;
  • складских и промышленных помещениях;
  • библиотеках, архивах;
  • жилых помещениях, школах, больницах и других местах массового скопления людей;
  • культурных организациях — галереях, выставочных залах и так далее;
  • на объектах с электрическими установками под напряжением до 1000В.

Системы пожаротушения тонкораспыленной водой имеют следующие преимущества:

  1. 1. Одновременно устраняют несколько источников возгорания, за счет формирования водяного тумана. Облако дополнительно проникает в труднодоступные места.
  2. 2. Сокращают расход воды.
  3. 3. Задерживают водяное облако в воздухе на протяжении 15 минут. Осевшая водяная пленка исключает повторное загорание.
  4. 4. Пригодны для тушения пожаров при низких температурах. Многие производители добавляют ацетат калия. В паре с водой он образует пену, сохраняющую свою эффективность в неблагоприятной окружающей среде.
  5. 5. Безопасны для людей. Используемая вода не вредит здоровью человека, позволяет проводить эвакуацию во время работы комплекса.
  6. 6. Просты в монтаже. Производители поставляют готовые модули. Это сокращает финансовые расходы на оплате труда специалистов.

Есть и недостатки:

  1. 1. Ограниченное время распыления. Продолжительность пожаротушения зависит от количества вытесняющего газа в модуле. Бывают случаи, когда его не хватало для ликвидации большого очага возгорания.
  2. 2. Необходимость регулярного технического обслуживания. Рабочие поверхности необходимо проверять и очищать, поскольку они быстро засоряются пылью, осадками и другими частицами.

Первый недостаток устраняется путем применения системы с компрессорной подачей вытесняющего агента. Но такое решение требует дополнительных финансовых вложений.

АУП-ТРВ разделяют на классы в зависимости от способа использования и монтажа. Существует два вида:

  1. 1. Стационарные модули ТРВ. Их монтируют на одно постоянное место. Управление происходит в автономном и централизованном режиме. Первый тип пригоден для защиты небольших помещений, второй — для объектов с площадью более 1 000 кв. м.
  2. 2. Переносные. Это огнетушители. Отличаются простотой использования, мобильностью. Не требуют регулярного обращения к специалистам.

Комплексы различаются и от вида используемого реагента. Поэтому бывают:

  • водяными;
  • водяными с добавками;
  • газо-водяными.

Особенности монтажа зависит от типа системы.

  1. 1. Комплексы высокого давления. Баллонные установки располагают близко к распылительным устройствам для исключения потери давления. Насосные устанавливаются далеко от распылителей, но соединение между ними происходит с помощью трубопроводных магистралей.
  2. 2. Комплексы низкого давления. Расположение баллонов с газом осуществляется строго специалистами службы, поскольку один элемент нуждается в своей рабочей площади. При этом система обязательно должна находиться рядом с оросителем.

Нюансы технического обслуживания описаны в паспорте отдельно взятой системы. Рекомендуется осматривать модули на предмет появления изменений и дефектов 1 раз в 3 месяца. Если возникла необходимость отключить комплекс или заменить реагент, то владелец должен обратиться к специалистам. Запрещено производить такие работы своими руками, не имея лицензии и специальной подготовки.

Системы пожаротушения тонкораспыленной водой — это современные безопасные и эффективные комплексы для ликвидации пожаров классов А и В. Преимуществ у таких установок намного больше, если сравнить с другими видами приборов. При выборе устройства важно посетить соответствующую компанию для создания проекта.

Тонкораспыленная вода: правда и вымысел

P.M.Тагиев, заместитель генерального директора ООО “Газобезопасность” ОАО “Газпром”,
доктор технических наук

Несмотря на отсутствие необходимой нормативно-технической базы, систему пожаротушения тонкораспыленной водой можно применять уже сейчас, но совсем не так, как ее позиционируют на рынке недобросовестные продавцы.

За последние пять лет в своей профессиональной деятельности мне неоднократно приходилось сталкиваться с вопросами, связанными с предложениями применения модульных и стационарных установок пожаротушения на основе тонкораспыленной воды. Ее иногда для большего эффекта называют “водяной туман”.

Систему эту зачастую преподносят как панацею от всех видов пожаров, и применение ее, по словам поставщиков оборудования для создания ТРВ, практически не ограничено.

Более того, идет агрессивная политика по внедрению этого оборудования. И никакие барьеры – нормативные, моральные, профессиональные, научные – не останавливают людей, готовых ради расширения рынка сбыта, создавать мифы и беззастенчиво, с вдохновением, в псевдонаучных статьях утверждать то, что никоим образом не соответствует действительности.

Вот выдержки из одной такой статьи. Не называю авторов, думаю, что они сами себя узнают. Цитирую:

“Сейчас уже нет надобности агитировать за тонкораспыленную воду (ТРВ). Ее преимущество перед традиционными способами пожаротушения более чем очевидно. При этом все большее значение приобретают системы пожаротушения, которые используют высокое давление (10 МПа и более). При таких давлениях на второй план уходят проблемы, связанные с потерями давления в магистральных линиях; споры о размерах частиц воды, обладающих эффективной пожаротушащей способностью (скоростная высокодисперсная струя воды имеет распределение частиц воды от нескольких микрон до десятков микрон), а само пожаротушение, даже на открытых площадках, из поверхностного переходит в разряд объемных (при скорости истечения воды, например в 200 м/с, образующийся водяной туман способен огибать преграды, проникая в самые недоступные места). Высокая дисперсность капель и скоростной напор существенно повышают огнетушащую способность таких установок. “

Не вступая в полемику, оставим на совести авторов все вышесказанное и читаем дальше:

Читайте также:
Схема дистанционного управления освещением

“При создании установок пожаротушения с помощью ТРВ на основе высокого давления (ТРВ ВД) пришлось столкнуться с главной проблемой – отсутствием научных и практических знании о процессе истечения высокоскоростных струй воды в атмосферу, о взаимодействии высокоскоростной струи, состоящей из капель мелкой дисперсности, со встречными тепловыми (конвективными) потоками и т.д.”

Что скажешь, проблема действительно сложная и решение ее тянет не на одну докторскую диссертацию и не на один патент. Но, как видим ниже, авторам она оказалась по силам:

“Для решения этой задачи пришлось разрабатывать научно-теоретический аппарат, создавать специальные пожарные стволы для ТРВ ВД, отрабатывать принципиально новые струйные, ротационные, тангенциальные и т.п. форсунки, выполнить большой объем экспериментальных исследований”.

После такого любое дело и проблема должны быть легко решены, но вдруг такая досадная мелочь По словам авторов, “остается главное препятствие на пути широкомасштабного внедрения новой технологии пожаротушения с использованием ТРВ ВД – это отсутствие соответствующей нормативной базы”.

Вроде бы, что стоит специалистам, разработавшим и научно-теоретический аппарат и принципиально новые форсунки, разработать полстраницы машинописного текста, так необходимые для проектирования подобных установок? Однако вот уже более 10 лет нормативной базы как не было, так и нет.

И сейчас самое время разобраться наконец-то, что это такое ТРВ, почему все ее сторонники, производители не могут определить ее нормативные расходы и условия ее применения для тушения пожаров. Для этого обратимся к мнению серьезных ученых и специалистов, далеких от авантюризма и безответственных высказываний.

В.П. Пахомов, главный инженер ЗАО “ПО “Спецавтоматика”:

“Применение АУПТ с тонкораспыленной водой существенно сдерживается отсутствием регламентированных требований. Это вызвано тем, что для за -щиты объекта при помощи тонкораспыленной воды недостаточно обеспечить заданную интенсивность орошения, как в случае с ординарной водой, для которой в НПБ-88 определены количественные значения интенсивности орошения, гарантирующие надежную защиту для различных групп помещений. Дело в том, что для реализации всех преимуществ, которые дает ТРВ, капли должны преодолеть конвективные тепловые потоки и достичь поверхности горения”.

Не вдаваясь в подробности и математические выкладки (это сделано уже не раз на страницах специализированных журналов), можно утверждать, что для выполнения этой задачи капли тонкораспыленной воды должны обладать гораздо более высокой начальной скоростью.

Именно скорость капель является тем параметром, без которого нельзя однозначно регламентировать процесс обеспечения пожарной безопасности при помощи ТРВ. Однако этой характеристики мы не найдем ни в одном из официальных документов, включая паспортные данные оросителей. Это связано с тем, что процесс тушения тонкораспыленной водой еще недостаточно изучен, и для получения точных зависимостей необходимо провести большое количество экспериментов.

В нынешней ситуации применение оросителей ТРВ, согласно НПБ-88, должно производиться на основе нормативно-технической документации предприятия-изготовителя. Изготовитель, в свою очередь, руководствуется результатами огневых испытаний, в ходе которых экспериментально подтверждается способность оросителя потушить очаг пожара определенного класса. В этом случае корректность заявленных параметров оросителя зависит от опыта производителя, наличия в его распоряжении необходимых методик, оборудования и персонала. Не последнюю роль играет и его “умеренность” в стремлении завысить технические характеристики в надежде получить дополнительную прибыль из-за более широкой области применения оросителей.

При этом необходимо отметить, что условия, при которых капли воды имеют высокую начальную скорость и способны достичь поверхности очага горения, можно охарактеризовать как способ тушения по поверхности.

В ряде публикаций показано, что размер капель, способных попасть на поверхность очага горения, должен быть не менее 150-200 микрон. Такие капли очень быстро падают и не могут накапливаться в воздухе. Для объемного тушения пожара необходимо генерировать капли размером 30 микрон, которые могли бы накапливаться в воздухе и создавать необходимую огнетушащую концентрацию. Однако помимо того, что устойчивая генерация с высокой массовой скоростью капель размером менее 30 микрон является сложной задачей, одновременно с процессом образования капель происходит их слипание и быстрое оседание. До настоящего времени нет надежных результатов по созданию оборудования для получения устойчивой огнетушащей концентрации мелкодисперсных капель воды во всем защищаемом объеме.

Мнение от фирмы NaNo Mist System, США, К.С. Адига РФ Хегер:

“В случае использования техники пожаротушения тонкораспыленной водой образуются капли со средним диаметром более 30 мкм. Капли такого размера бывают слишком большими для того, чтобы их можно было использовать для полного заполнения зоны пожара; такие капли испытывают значительное гравитационное воздействие и плохо проникают в те зоны горения, где наблюдается высокая загруженность объемов”.

А.Н. Баратов, главный научный сотрудник ВНИИПО, д.т.н., профессор:

“Тушение распыленными струями имеет ряд преимуществ (в первую очередь сокращается расход воды), и поэтому в последние годы этот способ находит все большее применение.

Вместе с тем среди специалистов существует мнение, что тушение пожаров тонкораспыленной водой менее эффективно, чем объемное тушение ингибирующими горение составами. Причем дискутируется возможность реализации именно объемного способа пожаротушения распыленной водой, заключающегося в равномерном заполнении защищаемого объема устойчивой взвесью примерно монодисперсной каплеобразной средой.

Имеющиеся технические устройства не могут решить эту проблему. Они создают, по существу, локальные потоки распыленной воды, и в этих условиях проникновение капель в пламя связано с необходимостью учета встречного потока продуктов горения. Для этого размер капель должен быть примерно 100 мкм. При этом расход воды оказывается весьма значительным, а значит, данный способ тушения не может конкурировать с объемным газовым пожаротушением.

Воду нельзя использовать для тушения веществ, бурно реагирующих с ней с выделением горючих газов. Также применение ТРВ недостаточно эффективно для тушения материалов, склонных к тлению”.

Из всего вышеизложенного, а также исходя из собственного опыта, могу сделать следующие выводы:

Способ пожаротушения на основе тонкораспыленной воды, безусловно, является поверхностным по площади. Этот способ пожаротушения не может конкурировать с объемным газовым пожаротушением. В нормативных документах не может быть регламентирована объемная концентрация ТРВ, так как до настоящего времени нет такого оборудования. Применять данный способ пожаротушения на тех объектах, где согласно нормам должно применяться объемное пожаротушение, нельзя, и все дискуссии об этом и попытки внедрения при сегодняшнем состоянии науки и техники, на мой взгляд, должны быть прекращены.
В федеральных нормативных документах отсутствуют требования к установкам пожаротушения тонкораспыленной водой по интенсивности орошения (л/с м2) и времени подачи огнетушащего вещества, это не позволяет разрабатывать типовые проектные решения для защиты объектов.

Применение запрещено!

Читайте также:
Чем мыть холодильник внутри от желтизны и запаха: как правильно и быстро отмыть?

Вопрос применения установок ТРВ на промышленных предприятиях в качестве аналога дренчерной системы пожаротушения также вызывает большие сомнения. Связано это с дорогостоящей водоподготовкой, к которой предъявляются совершенно другие, более высокие требования по сравнению с обычными способами водяного пожаротушения, более дорогостоящими материалами для изготовления оборудования для получения ТРВ, высокими требованиями к условиям эксплуатации систем, при соблюдении которых может быть обеспечена их работа.

Как практический работник, многократно наблюдавший закупорку отверстий диаметром в сантиметр, уверен, что если не будут соблюдаться вышеуказанные условия, все отверстия в установках подачи ТРВ будут закупорены, и они станут неработоспособными.

И для чего, собственно, городить все это дорогостоящее специальное оборудование, когда задачу можно эффективно решить при помощи обычной дренчерной системы с добавлением в воду пленкообразующего пенообразователя Инерционность системы мала и давление требуется менее 10 атм.

На объектах ОАО “Газпром” установки пожаротушения на основе тонкораспыленной воды запрещены. В соответствии с Концепцией противопожарной защиты объектов ОАО “Газпром” на объектах транспорта газа принят объемный способ газового пожаротушения с применением двуокиси углерода.

Все объекты, где в технологическом процессе применяются жидкие углеводороды, защищены автоматическими дренчерными установ- ‘ ками пожаротушения с добавлением в воду специального пленкообразующего пенообразователя. На объектах ОАО “Газпром” при выборе АУПТ мы исходим из критериев надежности, простоты в обслуживании, унификации на всех однотипных объектах отрасли, оптимальности цены, предельно малой инерционности, эффективности технологии пожаротушения, предотвращения повторного загорания и без нанесения при этом ущерба технологическому оборудованию.

Возникает вопрос: так что, установки пожаротушения на основе ТРВ никуда негодны и нигде неприменимы?

Применение разрешено!

Смею утверждать – у них уже сегодня есть область применения.

Все дело в непрофессионализме и недобросовестности людей, пытающихся любой ценой внедрить эти установки на промышленные объекты. Этому есть объяснение – большие объемы реализации.

Но вот на что хотелось бы обратить внимание. В ВИПТШ МВД СССР на занятиях по пожарной тактике, разбирая потушенные пожары, строя графики наращивания сил и средств, а также расхода воды на тушение, нас учили, что в идеале для тушения 1 м2 твердого горючего вещества требуется 0,5 л воды. На реальных пожарах на 1 м2 выливается сотни литров, а иногда тонны воды. Не случайно при пожарах в жилых домах зачастую больше ущерба бывает не от огня, а от пролитой воды.

На мой взгляд, применение ранцевых установок ТРВ для тушения квартирных пожаров не только оправдано, но и необходимо. И то, что их нет на вооружении каждой пожарной машины, стоящей в боевом расчете в городских частях, вызывает недоумение.

Применение стационарных установок тонкораспыленной воды оправдано только там, где автоматическое пожаротушение необходимо, но нельзя применить другие виды пожаротушения; в основном это объекты с постоянным пребыванием людей. И диапазон этот достаточно широк: вагоны метро, круизные лайнеры, гостиницы, больницы. Список можно продолжить.

Охлаждающий эффект распыленной воды обеспечит снизить температуру в помещении, позволяя эвакуировать людей и облегчая работу подразделениям пожарной охраны. Получаемый большой объем распыляемой воды будет способствовать уменьшению расхода воды на тушение, и соответственно снизится ущерб, причиняемый от пролива. Применение ТРВ на указанных объектах будет эффективным, спасет много человеческих жизней, имущество. В этом случае применение специально обслуживаемых и дорогостоящих установок подачи ТРВ целесообразно и оправдано. Кроме того, это сохранит нервы и время специалистам, занимающимся противопожарной защитой промышленных объектов на профессиональном уровне, и надеемся, отпадет необходимость отвлекаться от основной работы для того, чтобы отбиться от очередного “революционного”, “не имеющего аналогов” способа и от установки пожаротушения тонкораспыленной водой.

Читайте также:
Что надо знать об оформлении детской комнаты

Технологии водоподготовки. Методы очистки питьевой воды

Основные этапы водоподготовки

  1. Механическая очистка воды. Это подготовительный этап водоочистки, направленный на удаление из воды крупных (видимых) загрязняющих частиц – песка, ржавчины, планктона, ила и других тяжелых взвесей. Осуществляется перед подачей воды на главные очистные сооружения с помощью решеток с ячеей различного диаметра и вращающихся сеток.
  2. Химическая очистка воды. Производится с целью приведения качества воды к нормативным показателям. Для этого применяются различные технологические приемы: осветление, коагуляция, отстаивание, фильтрация, обеззараживание, деминерализация, умягчение.

Осветление требуется в основном для поверхностных вод. Проводится на начальном этапе очистки питьевой воды в камере реакции и заключается в добавлении к объему обрабатываемой воды хлорсодержащего препарата и коагулянта. Хлор способствует разрушению органических веществ, большей частью представленных гуминовыми и фульвокислотами, присущих именно поверхностным водам и придающих им характерную зеленовато-коричневую окраску.

Коагуляция направлена на очищение воды от взвесей и коллоидных примесей, невидимых глазу. Коагулянты, в роли которых выступают соли алюминия, помогают мельчайшим частичкам органики (планктон, микроорганизмы, крупные белковые молекулы), находящимся во взвешенном состоянии, склеиваться между собой и превращают их в тяжелые хлопья, которые затем выпадают в осадок. Для усиления хлопьеобразования могут добавляться флокулянты – химические вещества различных торговых марок.

Отстаивание воды происходит в резервуарах с медленным потоком и переливным механизмом, где нижний слой жидкости движется медленнее, чем верхний. При этом происходит замедление общей скорости движения воды, и создаются условия для выпадения в осадок тяжелых загрязняющих частиц.

Фильтрация на угольных фильтрах или углевание, помогает избавиться от 95% находящихся в воде примесей как химического, так и биологического свойства. Ранее вода фильтровалась на картриджных фильтрах с прессованными активированными углями. Но этот метод достаточно трудоемкий и требует частой и дорогостоящей регенерации фильтрующего материала. На современном этапе перспективным является применение гранулированных (ГАУ) или порошкообразных (ПАУ) активированных углей, которые всыпаются в воду в блоке углевания, и перемешиваются с обрабатываемой водой . Исследования показали, что такой метод значительно эффективней, чем фильтрование через блочные фильтры, и к тому же менее дорогостоящий. ПАУ помогают устранить загрязнение химическими соединениями, тяжелыми металлами, органикой и, что немаловажно, поверхностно-активными веществами. Фильтрация с помощью активированных углей технологически доступна на водопроводной станции любого типа.

Обеззараживание применяется на всех без исключения типах водопроводов для устранения эпидемической опасности питьевой воды. В наше время способы обеззараживания предоставляют большой выбор различных методов и дезинфицирующих препаратов, но одной из составляющих неизменно является хлор, благодаря своему свойству сохранять активность в разводящей сети и дезинфицировать водопроводные трубы.

Деминерализация в промышленных масштабах предполагает удаление из воды избыточного количества железа и марганца (обезжелезивание и деманганация соответственно).

Повышенное содержание железа меняет органолептические свойства воды, приводит к окрашиванию ее в желто-бурый цвет, придает неприятный «металлический» привкус. Железо выпадает в осадок в трубах, создавая условия для их дальнейшего загрязнения биологическими агентами, окрашивает белье при стирке, негативно влияет на сантехническое оборудование. Кроме того, высокие концентрации железа и марганца могут вызывать заболевания желудочно-кишечного тракта, почек и крови. Сверхнормативное количество железа, как правило, сопровождается высоким содержанием марганца и сероводорода.

На коммунальных водопроводах обезжелезивание проводится методом аэрации. При этом двухвалентное железо окисляется до трехвалентного и выпадает в осадок в виде хлопьев ржавчины. Далее ее можно устранить с помощью фильтров с различными загрузками.

Аэрация проводится двумя способами:

  • Напорная аэрация – в контактную камеру по центру подается воздушная смесь по трубе, доходящей до половины камеры. Затем происходит барботирование толщи воды пузырьками воздушной смеси, которая и окисляет металлические примеси и газы. Аэрационная колонна заполняется водой не полностью, над поверхностью находится воздушная подушка. Ее задача заключается в смягчении гидроударов и увеличении площади аэрации.
  • Безнапорная аэрация – проводится с помощью душевальных установок. В специальных камерах вода распыляется с помощью водяных эжекторов, что значительно увеличивает контактную площадь воды с воздухом.

Помимо этого, железо интенсивно окисляется при обработке воды хлором и озоном.

Марганец удаляется из воды фильтрованием через модифицированные загрузки либо добавлением окислителей, например, перманганата калия.

Умягчение воды проводится для устранения солей жесткости – карбонатов кальция и магния. Для этого используются фильтры с загрузкой кислыми или щелочными катионитами или анионитами, замещающими ионы кальция и магния на нейтральный натрий. Это достаточно дорогостоящий метод, потому используется чаще всего на локальных станциях водоочистки.

Читайте также:
Чем хороши натяжные потолки

Подача воды в распределительную сеть

После прохождения полного комплекса очистных сооружений на водопроводной станции вода становится питьевой. Затем она подается потребителю системой водопроводных труб, состояние которых в большинстве случаев оставляет желать значительно лучшего. Потому все чаще и чаще звучит вопрос о необходимости доочистки водопроводной питьевой воды и не только приведении ее к нормативным требованиям, но и придания полезных для здоровья качеств.

Мы сотрудничаем с крупнейшими Российскими и Европейскими производителями, что позволяет предлагать максимально выгодные решения с точки зрения капитальных и эксплуатационных затрат.

В отдельных случаях – при заключении контракта на поставку крупного инженерного оборудования мы готовы выполнить разработку рабочего проекта Бесплатно.

Мы не навязываем оборудование собственного производства, мы предлагаем варианты решения Вашей инженерной задачи по открытой, обоснованной цене, на базе передовых решений и опыта.

С уважением, генеральный директор ООО «Регион»
Щукин Алексей Владимирович

Телефон для связи: +7 (812) 627-93-38

Работаем по всей России Контакты. Тел/ф + 7(812) 627-93-38; info@dc-region.ru Автор G+
Связаться с нами вы можете с 9.00 – 18.00 (пнд – пят).
Наш специалист всегда ответит на Ваши вопросы
и проконсультирует по возможным решениям тех или иных задач
по телефону или по запросу на почту market@dc-region.ru.
+7 (931) 350 04 34
+7 (911) 088 95 67
+7 (963) 306 04 27
по номеру +7 (911) 130 08 19
Наш Skype: dc-region
Наш Telegram по номеру: +7 (911) 130 08 19

Мы в социальных сетях

Проектирование жилых, гражданских и промышленных зданий и сооружений,
в том числе очистных сооружений и инженерных сетей и систем. По всей России.

Живая вода: пять прогрессивных технологий очистки

По оценкам ООН, к 2050 году на Земле будут жить 9,8 млрд человек. Изменение климата, а также развитие сельского хозяйства и промышленности для удовлетворения потребностей постоянно растущего населения приведут к серьезному сокращению доступных водных ресурсов.

Согласно исследовательскому проекту WaterAid, 60% населения планеты уже сейчас живет в районах, где водоснабжение не может или скоро прекратит удовлетворять спрос. Водный кризис наиболее болезненно проявляется на Ближнем Востоке, в Центральной Азии и Северной Африке.

Россия в рамках прогнозного горизонта 2040 года находится в зоне низко-среднего риска.

Главные тренды рынка

Как развитые, так и развивающиеся страны сталкиваются с одной общей проблемой — ростом объемов промышленных и городских сточных вод. Это, в свою очередь, побуждает разработчиков из разных стран к поиску новых и все более совершенных технологий очистки воды.

Традиционные методы очистки включают использование адсорбентов, обратного осмоса, ионного обмена и электростатического осаждения. Их недостатки — высокая стоимость, плохая возможность повторного использования и низкая эффективность. Несмотря на прогресс, достигнутый в разработке новых технологий за последнее десятилетие, их использование ограничено в основном из-за свойств материалов и стоимости.

Согласно аналитическому агентству Mordor Intelligence, в 2020 году объем мирового рынка технологий очистки воды оценивался на уровне $50,5 млрд. До 2026-го рынок ежегодно будет расти примерно на 7% из-за быстро сокращающихся ресурсов пресной воды во всем мире. Спрос растет также со стороны разработчиков месторождений сланцевых углеводородов, производителей биотоплива и др.

Негативно повлияла на рынок пандемия COVID-19. Но она же привела к появлению новой технологии, которая позволяет обнаружить коронавирус в сточных водах. Метод позволяет измерить присутствие РНК-генетического материала SARS-CoV-2 (рибонуклеиновая кислота) в человеческих фекалиях в системе сбора сточных вод. Исследования в Нидерландах показали связь между объемом вирусного материала в сточных водах и количеством случаев заражения в данном районе и помогают отслеживать эпидемиологическую ситуацию и эволюцию вирусов. Эта методика была также протестирована в 2020 году в более чем 40 штатах Америки, причем в университете Аризоны помогла предотвратить вспышку коронавируса, где выявили двух человек с бессимптомным течением болезни.

Перечислим пять наиболее инновационных, по нашему мнению, технологий очистки воды.

1. Мембранное разделение

Это давний и популярный метод очистки воды от примесей и загрязнителей. Есть много технологий, которые работают как фильтр: пропускают воду через пленку с микроскопическими отверстиями. Вода проходит, а загрязняющие частицы застревают на мембране.

Методы современного мембранного разделения, такие как обратный осмос (удаляет частицы даже размером 0,001-0,0001 мкм — соли жесткости, сульфаты, нитраты, ионы натрия, красители и т.д.), могут очистить воду от 99,5% примесей. Но для этого размер пор должен быть менее микрона. Основной недостаток технологии — высокая стоимость обслуживания (мембраны часто забиваются).

2. Облучение

Как следует из названия, этот процесс основан на воздействии радиации на сточные воды, чтобы уничтожить органические загрязнители. Источники излучения — от гамма-лучей до ультрафиолетового света.

Облучение обычно используют для обеззараживания, но некоторые методы, например, ионизирующее облучение, в сочетании с добавлением озона или перекиси водорода улучшают эффективность разложения органических примесей, включая пестициды и фенолы.

Читайте также:
Срок службы пеноблока и газоблока

Современные системы УФ-обработки предлагают применять светодиодные лампы. Сейчас такие лампы начинают активно внедрять в коммунальном секторе, а также используются NASA в космических разработках агентства.

Второй способ — это гидрооптические технологии. Они позволяют использовать несколько раз энергию фотонов, так как ультрафиолетовые лучи отражаются от стенок кварцевой камеры. Это повышает эффективность дозы УФ-облучения для уничтожения сложных вирусов, например, коронавируса или аденовируса.

Артур Душенко, главный инженер VODACO, Россия:

«Вирусы и бактерии, поступающие в водоемы со сточными водами, в дальнейшем могут попадать в системы коммунального водозабора на том же водоеме. Современные системы реагентной дезинфекции с использованием гипохлорита натрия или жидкого хлора не способны обезвредить все бактерии, так как многие из них, такие как Cryptosporidium или Giardia (криптоспоридии или лямблии. — РБК Тренды), устойчивы к воздействию хлора так же, как и сложные формы вирусов — аденовирус и коронавирус (как яркий пример — SARS-CoV-2).

Системы УФ-дезинфекции на базе технологии HOD UV обеспечивают дозу воздействия на данные микроорганизмы в 120 mJ/cm2 и выше — это необходимое условие для обезвреживания вируса, разрушения цепочки РНК и угнетения способности к восстановлению. В России стандарт воздействия ограничен на законодательном уровне — 30 mJ/cm2».

3. Очистка наночастицами

Люди давно используют такие вещества, как древесный уголь, для очистки воды путем адсорбции. При очистке наночастицами используется та же механика, но с частицами в наномасштабе. Различные типы наноматериалов — металлические наночастицы, наносорбенты, биоактивные наночастицы, нанофильтрационные (NF) мембраны, углеродные нанотрубки (УНТ), цеолиты и глина — оказались эффективными материалами для очистки сточных вод. Их использование устраняет пестициды и тяжелые металлы в воде. Углеродные нанотрубки также рассматривают как прорывную технологию для опреснения морской воды до стадии питьевой. Основной недостаток технологии — стоимость.

4. Биоаугментация

Органический способ очистки представляет собой добавление в воду смеси микроорганизмов, которая разрушает и удаляет загрязнения. Эти микроорганизмы включают ферменты и безопасные бактерии, которые естественным образом разлагают загрязняющие вещества, такие как масла или углеродные продукты. Но биоаугментация может влиять на экосистему микрофлоры и, как следствие, нарушать процесс очистки. Поэтому эту технологию пока нельзя использовать для получения питьевой воды.

5. Мембранная биоаугментация

Мембранные биореакторы (MBR) — гибридная технология, которая включает мембранное разделение и биоаугментацию. Сточные воды после биологической очистки при помощи активного ила подают в емкость, называемую биореактором. В этой емкости располагаются мембраны, которые разделяют сточные воды на два потока — активный ил, используемый повторно для биологической очистки, и чистую воду.

На рынке представлены два основных типа MBR — это системы с вакуумным (или гравитационным) потоком и системы под давлением. Вакуумные системы погружаются в воду и имеют мембраны, установленные либо внутри биореакторов, либо в последующем резервуаре. Второй тип MBR, где поток управляется давлением, представляет собой внутритрубные картриджные системы, расположенные вне биореактора.

Преимущество мембранной биоаугментации — небольшая площадь для биологической очистки. MBR-реакторы увеличивают мощность очистных сооружений без увеличения площади конструкций.

Ольга Рублевская, директор Департамента анализа и технологического развития систем водоснабжения и водоотведения ГУП «Водоканал Санкт-Петербурга»:

«Нева — это основной источник водоснабжения в Санкт-Петербурге. Благодаря программе прекращения сброса сточных вод без очистки в Неву и Финский залив в 2021 году уровень очистки достиг 99,5%. К 2030 году весь объем стоков будет перерабатываться на очистных сооружениях. Сейчас наша технологическая схема очистных сооружений состоит из механической, химической и биологической очистки.

  • Механическая очистка включает решетки, песколовки, отстойники, в том числе прессование и отмыв отбросов (дополнительное поступление органических веществ в стоки) и преферментацию сырого осадка на стадии отстаивания (увеличение летучих жирных кислот).
  • Биологическая очистка основана на технологических схемах UCT (технология Кейптаунского университета) и JHB (технология Йоханнесбургского университета).
  • Химическая обработка применяется для удаления фосфатов. Используемый реагент — сульфат алюминия.

Так как в Санкт-Петербурге нет дефицита воды, то в городе нет ни вторичного использования очищенной воды, ни планов по применению таких технологий».

Необходимость через отвращение

Повторное использование сточных вод для орошения и других непитьевых целей стало обычным явлением и существует уже не одно десятилетие. Так, например, в Израиле, почти 90% сточных вод страны используется повторно в сельском хозяйстве.

Для доочистки сточной воды до состояния питьевой необходима надежная технологическая схема, которая включает как минимум пять стадий. Повторно используют очищенные сточные воды питьевого качества Австралия, Сингапур, Намибия, Южная Африка, Кувейт, Бельгия, Великобритания и США (штаты Калифорния и Техас). В этих странах очищенной водой пополняют подземные или поверхностные водные источники (плотины).

Речная вода, используемая в различных городах для производства питьевой воды, содержит в себе большие объемы сточных вод. Переработанная вода безопасна для питья, но некоторые люди не могут преодолеть чувство отвращения. Периодически во всем мире проходят акции по преодолению психологических барьеров. Так, основатель Microsoft Билл Гейтс выпил стакан жидкости, которая была переработана из человеческих фекальных масс в питьевую воду по технологии Omniprocessor Фонда Билла и Мелинды Гейтс. А французская компания Veolia запустила в Чехии совместный проект с пивоварней Čížová, которая из переработанных стоков сварила пиво.

Читайте также:
Чем обработать деревянный дом снаружи?

Современные способы и методы очистки воды

Системы водочистки являются неотъемлемой частью современной жизни и практически все потребители (от частных лиц до предприятий) нуждаются в качественной и правильно подготовленной воде.

Реализованные в них методы и технологии бывают разными, с особенностями каждого варианта стоит познакомиться заранее.

Какие существуют по принципу действия?

В зависимости от принципа действия выделяют такие способы очистки воды как:

  • Физические (грубая механическая чистка).
  • Химические (смешение воды с реагентами).
  • Физико-химические (сложные комплексные мероприятия).
  • Биологические (воздействие живых микроорганизмов).

Физические методы

Данные методы предназначены для очищения воды от твердых крупнофракционных частиц (чаще всего – нерастворимых).

Они успешно задействуются на этапах первичной и грубой очистки и в разы реже – при глубоких и тонких воздействиях.

Среди главных физических методов выделяют:

  • Процеживание – очищение жидкостей от крупнофракционных посторонних включений при проходе через ячеистые прослойки (сетки, решетки, полипропиленовую мешковину). К преимуществам этого метода относят простоту и эффективное улавливание крупного мусора, к минусам – потребность в частой промывке фильтрующих элементов, пропускание патогенных микроорганизмов, солей и любых мелких нежелательных примесей.
  • Отстаивание – осаждение посторонних фракций под действием собственного веса вниз с последующим отбором более чистой воды. Этот метод используются как на предварительных, так и на промежуточных этапах водоподготовки, его производительность существенно ограничена временем и объемами отстойников.
  • Фильтрование – схожий с процеживанием, но более совершенный метод, позволяющий очищать воду от ненужных примесей с разным размером фракций (минимальный порог – до микронов) при прохождении через пористый фильтрующий слой. Метод активно используется в быту и на производстве, из всех физических видов он считается самым эффективным.
  • УФ-дезинфекция – обработка предварительно очищенной от крупных фракций воды УФ-лучами с длиной волн в пределах 200-400 нм с целью обеззараживания. Состав и физические свойства жидкости этот метод не меняет.

Химические

Эти методы ценятся за эффективность и высокую производительность.

Исходя из вида протекающих реакций выделяют такие химические методы водоочистки как:

  1. Нейтрализация – выравнивание PH-баланса воды за счет добавления особых реагентов (аммиачной воды, гидроксидов калия или натрия, кальцированной соды) или ее пропускании через кислые газы. Чаще всего к этому методу обращаются при регенерации промышленных стоков, забираемая из скважин или водоемов вода изначально имеет нейтральную среду и корректировке баланса не нуждается.
  2. Окисление – обезвреживание токсичных водных растворов и хлорирование воды при добавлении активных окислителей. Несмотря на высокую эффективность (микроорганизмы убиваются быстро и надолго) метод считается опасным для здоровья человека.
  3. Очистку восстановлением. Данный метод выбирается при высокой доли легко восстанавливаемых веществ в исходной воде или стоках. При его выборе из воды удаляются ряд простых и переходных металлов и минералов (хрома, ртути или мышьяка) и их соединений.

Физико-химические

Данная группа представлена комплексными методами с широким спектром применения, задействуемыми на любых этапах очистки и водоподготовки.

Очистка воды при их выборе осуществляется самыми разными способами, включая воздействие растворенных газов, тонкодисперсных сред и изменение ионного состояния молекул.

Особенности наиболее востребованных физико-химических методов изложены в таблице:

Наименование Кратное описание метода Оптимальное применение/ возможные ограничения
Флотация Отделение и подъем твердых гидрофобных частиц при пропускании сквозь толщу воды пузырьков воздуха или других инертных газов. Формируемая на поверхности пена или прослойка легко удаляется механическими способами. Очистка жидкостей от нефтепродуктов и масел, удаление твердых примесей при низкой эффективности других методов.
Сорбация Избирательная фильтрация ненужных примесей при поверхностном или объемном прохождении воды через материалы с пористой структурой (силикагели, уголь и их аналоги). Используемые сорбенты могут быть восстанавливаемыми или утилизируемыми после потери фильтрационных свойств. Удаление ПАВ, пестицидов, фенолов, процессы доочистки.
Экстракция Заливка в очищаемую воду мало- или несмешиваемых веществ, растворяющих грязь, с последующим активным перемешиванием, отстаиванием и разделением разнофазных сред. Удаление органический соединений, включая фенолы, регенерация стоков.
Ионообмен Обмен ионами между очищаемой водой и природными (цеолиты, сульфоугли) или искусственными (синтетические смолы) ионитами. Умягчение воды/ метод не предназначен для бытовой очистки больших объемов сильнозагрязненной воды.
Электродиализ Очищаемая вода последовательно проходит камеры с ионоселективными мембранами и электродами постоянного тока. В первых камерах вода избирательно обессоливается, в крайних – накапливает концентрат солей с последующим разделением. Обессоливание и удаление нежелательных ионов. Регенерация стоков на химических предприятиях.
Обратный осмос Вода пропускается через мембраны с микроскопическими ячейками под избыточным гидростатическим давлением с последующей утилизацией выделенного загрязненного раствора. Обессоливание, отделение нежелательных микроорганизмов, растворенных газов и коллоидных веществ.
Термические методы Суть данных метолов состоит в получении дистиллята или максимально очищенной воды после ее выпаривания, вымораживания или термического окисления (распыление и пропускание через высокотемпературные продукты сгорания). Нейтрализация или удаление токсичных или слабо разлагающихся примесей.
Читайте также:
Уличная лестница из металла

Биологические

Эти методы преимущественно задействуются при очищении стоковых вод и базируются на использовании живых организмов.

К последним относят как бактерии (окисляющие и разрушающие токсичные и азотосодержащие соединения, поглощающие фосфаты), простейшие грибы и водоросли, так и многоклеточные (черви, насекомые).

Водоочистка биологическими методами проводится в:

  • Естественных или искусственных водоемах, очищающих сравнительно небольшие объемы воды со средней степенью загрязненности при минимуме усилий и трат.
  • Биофильтрах – специальных сооружениях с фильтрующей прослойкой из аэробных микроорганизмов с естественным или принудительным воздухообменом.
  • Аэротенках – сложных автоматизированных комплексах с принудительной аэрацией.
  • Метатенках – устройствах анаэробного брожения для переработки концентрированных стоковых осадков.

Современные технологии очищения

В современных системах водоподготовки приведенные методы используются в комплексе.

Ярким примером служат многоступенчатые бытовые фильтры с механическими предфильтрами, ионообменными или сорбционными картриджами и обратноосмотическими мембранами. Такие установки обеспечивают полноценную подготовку питьевой воды вне зависимости от ее исходных параметров.

К инновационным тенденциям в сфере водоподготовки относят:

  • Отказ от метода хлорирования в пользу озонирования (окисление жидким кислородом) и/или УФ-обработки.
  • Использование ультрафильтров и нанофильтрационных мембран с пониженной селективностью.
  • Вывод взвесей и растворенных органических примесей с помощью электроприборов фотокатализации.

При всех своих преимуществах такие технологии нельзя назвать бюджетными, соответствующие фильтры, мембраны и другие расходные материалы обходятся дорого и в быту не окупаются.

Проверенные новые методы (ионообмен, обратный осмос, многоступенчатое исполнение фильтра), наоборот, становятся более доступными для частных лиц.

Фильтрация на предприятиях

Взаимосвязь между областью использования и требуемым типом системы водоподготовки отражена в таблице:

Отрасль производства Требуемые функции основной линии подготовки
Металлургия Обессоливание
Пищевая промышленность Обеспечение ионного обмена, обеззараживание, умягчение
Добыча и переработка нефти и газа Исключение посторонних примесей, обезжелезивание, обратный осмос
Энерго- и тепло- и водоснабжение Обессоливание, УФ-фильтрация, хлорирование или озонирование
Фармацевтика Обратный осмос, дистилляция

В целях экономии средств приведенные методы реализуются в комплексе с механическим фильтрованием.

Отдельные требования выдвигаются к системам переработки стоков предприятий химической или металлургической отрасли, отбираемый концентрат может быть ценным или нуждаться в обязательной утилизации.

Переработка стоков

Полный цикл переработки стоков на производстве и в общественных линиях включает:

  1. Подачу стоков на усреднитель при необходимости разбавления.
  2. Отстаивание механическим способом.
  3. Основную чистку (активное использование живых организмов).
  4. Глубокую чистку (удаление всех посторонних примесей с помощью обратноосмотических мембран или тонких фильтров).
  5. Обеззараживание (УФ-обработка, хлорирование, озонирование).

Выделяемый на 2, 3 и 4 стадиях осадок в обязательном порядке регенерируется или утилизируется. Эти процессы происходят в метатенках, отжимных или сушильных аппаратах.

К дорогостоящим физико-химическим методам прибегают лишь при повышенных требованиях к чистоте состава или при низкой результативности других способов.

Бытовое очищение стоков требует меньше усилий. Владельцы индивидуальных домов, но подключенных к канализационным сетям используют септики (как с днищем, так и без), сорбенты или коагулянты.

Более подробно об очистке сточных вод читайте здесь.

Удаление тяжелых металлов

Потребность в принятии дополнительных мер возникает при отклонении ПДК тяжелых металлов в воде от санитарно-гигиенически норм. Чаще всего такая ситуация наблюдается при близости скважины к септику или попадании этих веществ извне (осадки, протекание зараженных грунтовых вод, контакт с металлически фитингами).

Для удаления этих веществ в быту и промышленности используются следующие химические и физико-химические методы:

Тип металла Допустимая концентрация в воде, не более мг/л Рекомендуемый метод очистки воды
Марганец и железо 0,1 Ионообмен, аэрация с последующей подачей в засыпной фильтр с каталитическим зарядом, окисление гипохлоритом натрия, дозированная подача сильнодействующих окислителей
Сероводород 0,01, вещество очень токсично Окисление, выветривание, насыщение кислородом
Свинец 0,03 Обратный осмос, окисление и восстановление
Ртуть 0,001 Обратный осмос, а также окисление и восстановление
Хром 0,05 Окисление, обратный осмос и восстановление
Никель 0,1 Окисление и восстановление

Системы обратного осмоса при несомненной эффективности редко используются из-за дороговизны и ускоренного использования ресурсов мембран.

Заключение

Приведенные методы непрерывно совершенствуются и дополняют друг друга, при выборе конкретного варианта стоит ознакомиться с их особенностями и возможными ограничениями заранее.

Ни один из методов, который существует, нельзя назвать универсальным, при правильной организации водоподготовки они задействуются в комплексе.

Вне зависимости от выбранного метода к потребителю или на промышленные объекты подается вода с контролируемыми параметрами.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: