Стабилизатор напряжения своими руками

Релейный стабилизатор напряжения 220V без разрыва цепи

Содержание / Contents

  • 1 Идея
  • 2 Принципиальная схема
  • 3 Программа
  • 4 Технические характеристики
  • 5 Детали и конструкция
  • 6 Настройка
  • 7 Замеченные недостатки
  • 8 Выводы
  • 9 Использованы источники
  • 10 Файлы

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения — там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением № 2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

↑ Принципиальная схема


Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт , включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

↑ Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Читайте также:
Хранение колес на балконе

↑ Детали и конструкция



↑ Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки “Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт”. Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

↑ Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

↑ Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

↑ Использованы источники

1. Статья «Типы стабилизаторов напряжения» на сайте «Энергосбережение в Украине»
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

↑ Файлы

Иван Внуковский,
Украина, г. Днепропетровск

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Стабилизатор напряжения своими руками

Симисторный стабилизатор сетевого напряжения

Автор: Рашид Айдиев, rashid.aidiev@mail.ru
Опубликовано 17.09.2014
Создано при помощи КотоРед.
Участник Конкурса “Поздравь Кота по-человечески 2014”

Также присоединяюсь к поздравлениям в адрес нашего дорогого Кота. Здоровья и процветания желаю.

В честь такого знаменательного события, решил и я внести свою лепту в содержание сайта, информацией которого пользуюсь постоянно на протяжении уже 2х лет. Это моя первая статья, надеюсь не последняя.

Этим летом возникла необходимость в стабилизаторе сетевого напряжения, т.к. ее значение в дневное и ночное время опускалось до 160 вольт, а по утрам нередко достигала 230 вольт и выше. Изменения эти носят плавный характер и зависят от загруженности электрических сетей. Современная техника в принципе допускает работу в большом диапазоне входных напряжений, но УПС компьютера переходит на батарейное питание при опускании ниже 170 вольт, также туго приходится холодильнику. Возвращаться к одному мощному релейному стабилизатору не хотелось (валяется после года эксплуатации со сгоревшими контактами реле) и было решено собрать 2 стабилизатора. Для компьютера я сконструировал стабилизатор на малогабаритных реле с расчетом где то на 300 вт. Но для холодильника хотелось чего то нового. Было решено использовать для этих целей симисторы BTA24-600 которые валялись у меня без дела. Опыта работы у меня с симисторами/тиристорами не было, поэтому пришлось пользоваться литературой, также помогли ребята на форуме.

Читайте также:
Что можно сделать из жалюзей

Принцип работы стабилизатора состоит в включении последовательно с нагрузкой обмоток вольтодобавочного трансформатора. Регулирование решил сделать по выходному напряжению и установил рамки 210-230 вольт. При выходе за эти рамки последовательно переключаются обмотки в зависимости от направления. Бвло решено сделать три обмотки на повышение по 15 вольт, один выход прямой и один понижающий также на 15 вольт.

Управление я решил доверить Атмеге8 и моему коду. Код написан на уровне начинающего (каким я являюсь уже год) так что прошу не пинать.

Так как оптосимисторы применены без zero kross и для того чтоб исключить одновременное открытие 2 симисторов применены 2 детектора перехода сетевого напряжения через нуль: входного и выходного. Реализовано это на компараторах LM358.

При включении стабилизатора в сеть происходит сперва задержка включения на 2 минуты, по истечении которых, включается симистор соответственно входному напряжению и устанавливается первоначальное выходное напряжение. Далее выходное напряжение корректируется последовательным переключением обмоток с частотой около 1 сек.Если выходное напряжение выйдет за пределы 160-250в устройство обесточивает нагрузку на 3 минуты, при этом на индикаторе сперва высвечивается Err, и со 120 сек идет обратный отсчет. Далее все повторяется.

При получении команды на переключение система ждет перехода через нуль входного напряжения. Получив сигнал об этом система отключает включенный симистор и начинает ждать нуль на выходе и 1 на входе, что будет говорить о том что нагрузка выключена. И только после этого даем команду на включение следующего симистора. Такой алгоритм позволяет работать и на индуктивную нагрузку, где может иметь место сдвиг фаз. Максимум можем потерять полупериод напряжения при переключении. На деле срыва синусоиды я не не наблюдаю.

Теперь подробно о сборке:

Сперва надо определится с трансформатором. Здесь каждый идет по своему пути. Подробно на процессе изготовления и расчете трансформатора я останавливаться не буду, скажу лишь что свой я мотал на торе, ориентировочно на 180 вт габаритной мощности. На него было намотано около 1000 витком провода 0.45 с межслойной изоляцией малярной лентой и пропиткой лаком. Вольтодобавочные обмотки по 70 витков провода 1 мм и одна обмотка для питания схемы 60 витков.

Убедившись в нормальной работе работе транса ( ток ХХ и напряжения с вольтодобавочных обмоток) травим и собираем плату управления .

Схема тактируется кварцем 14,3 Мгц выпаянным с материнской платы. Не забываем впаять конденсаторы. Фьюзы настраваем на внешний кварц, высокую частоту. Прошиваем ее сперва версией прошивки темр ( она без защит) и переходим к кропотливой настройке показаний входных и выходных напряжений путем подбора соостветсвующих резисторов. Обратите внимание что входное напряжение я измеряю с обмотки питания схемы. Сперва необходимо настроить резисторы в детекторах нуля с целю получения логического нуля длительностью около 1 мс при переходе синусоиды через нуль.

Затем работаем с силовой платой

Читайте также:
Триммер или газонокосилка: чем лучше косить газон, что выбрать для неровного участка

Обратите внимание, что симисторы я развел зеркально и также собрал, что явилось причиной смерти 2 симисторов. Запивать симисторы на моей печатке надо со стороны печатных проводников.

Далее размещаем все в корпусе, Разбираемся с фазированием обмоток и подсоединяем все соединения. Обратите внимание что 3 обмотки включаются как повышающие и одна как понижающая. Для этого ее включаем в противофазе.

В качестве корпуса я выбрал от БП-АТХ. На снование его приварен болт, которым прижимается трансформатор.


Также покрыл корпус сверху черной самоклейкой

Стабилизатор работает у меня около недели. Проблемы не выявлены, нагрев абсолютно отсутствует.

Внимание:

Устройство предлагается “как есть”!

Ответственности за возможный причиненный ущерб здоровью, имуществу не несу!

Не является устройством защиты от внезапных перепадов сети!

Сборка устройства предполагает наличие у сборщика определенных знаний, умений в радиотехнике. Устройство гальванически связано с сетью. Также при настройке подключайте последовательно с лампочкой 60 вт.

Устройство стабилизации сетевого напряжения

Напряжение электросети у потребителей значительно отличается в связи с потерями в линии. Снижение напряжения может достигать значительных величин и вызвать сбой в работе приборов и устройств. Особенно страдают от нестандартного напряжения бытовые приборы оснащённые электродвигателями: холодильники, стиральные машины, пылесосы, водяные насосы и электроинструмент.

Повышенное напряжение электросети ведёт к интенсивному нагреву обмоток электродвигателя и износу коллектора, пробою изоляции. Пониженное напряжение оказывает не лучшее влияние: не запускаются электродвигатели или включаются рывками, что приводит к преждевременному износу пускорегулирующей аппаратуры.

Выход из создавшего положения довольно прост – установить вольтодобавочный трансформатор, суммарное напряжение вторичной обмотки и электросети станет близким к стандартному напряжению питания. Отрицательного влияния на электросеть такое устройство не оказывает. Наличие устройства поддержания напряжения электросети позволяет защитить электроприборы как от повышенного, так и от пониженного значения.

В данном устройстве силовой трансформатор небольшой мощности используется для увеличения напряжения при неизменной мощности потребления. В реальном устройстве достаточно несколько увеличить напряжение электросети вольтодобавкой, а затем стабилизировать. Разница входного и выходного напряжения используется на компенсацию при пониженном напряжении, повышенное напряжение сети снижается транзисторным регулятором.

Характеристики прибора:
Напряжение электросети 160-250 Вольт.
Вторичное напряжение 220 Вольт.
Мощность нагрузки до 2000 Ватт.
Ток нагрузки до 5 Ампер.
Вес 2кг.

Цена прибора в основном состоит из цены силового трансформатора типа ТС180-ТС320 от старых телевизоров и не превышает 500 рублей. Хорошо зарекомендовали трансформаторы типа ТН или ТПП с током вторичных обмоток в 6-8 Ампер при общем напряжении вторичных обмоток 24-36 Вольт. Схема устройства стабилизации напряжения состоит: из силового трансформатора T1, мощного диодного моста VD1 силовой цепи и ключевого транзистора VT1.

Цепи отслеживания напряжения ошибки состоят из диодного моста VD2 и усилителя ошибки на параллельном стабилизаторе DA1.

Повышение напряжения в сети приводит к увеличению напряжения во вторичной обмотке силового трансформатора 3Т1,напряжение на конденсаторе С3 увеличивается, что приводит к открыванию параллельного стабилизатора DA1 и шунтированию напряжения на резисторе R7.Напряжение на затворе полевого транзистора VT1 падает и приводит к его закрытию, что ограничивает вторичное напряжение на клеммах ХТ3, ХТ4.

Пониженное напряжение электросети приводит к обратному процессу – снижению напряжения на вторичных обмотках трансформатора, закрытию параллельного стабилизатора на м/с DA1 и открытию полевого транзистора VT1, что приводит к увеличению напряжения на вторичных обмотках.

Наладка схемы заключается в установке пределов стабилизации выходного напряжения. После включения (желательно на активную нагрузку в виде настольной лампы) резистором R5 выставляется выходное напряжение 225 вольт, подключив более мощную нагрузку в 1-1,5 квт (с соблюдение техники безопасности ) – подкорректировать в пределах 220 Вольт.

Читайте также:
Технология изготовления и производства пластмассовых изделий

Через 5-10 минут работы устройство и нагрузку отключить от электросети, проверить тепловые режимы всех радиодеталей, они не должны быть горячими, в ином случае увеличить радиатор ключевого транзистора.

Ввиду разброса усиления мощного полевого транзистора N-типа, начальное смещение можно подкорректировать подбором сопротивления резистора R4 -тока затвора. Транзистор закрепить на радиаторе 50*50*20мм через слюдяную прокладку.

Печатный монтаж схемы и трансформатор установлены в подходящем корпусе размеры которого зависят от габаритов трансформатора Т1. Индикатор работы устройства HL1 и выключатель сети SA1 с предохранителями FU1, FU2 – расположены сверху и сбоку корпуса.

При использовании металлического корпуса применить сетевую вилку с заземляющим ножом, вывод которого подключить к корпусу.

Радиодетали устройства в основном заводского исполнения, трансформатор используется без переделки: вторичная обмотка 2Т1 состоит из двух параллельных обмоток на 36 вольт, третья обмотка 3Т1 напряжением 6,3 вольта. Резисторы типа МЛТ или С29 .Подстроечные типа СП или СПО.

Силовые провода, обозначенные на схеме более толстыми линиями выполнить многожильным проводом сечением не менее 4мм., остальные соединения 0,5 мм.

Стабилизатор напряжения на транзисторах

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Читайте также:
Художественная роспись потолка в интерьере
Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Срубка оголовков свай снип

Сведения о своде правил

1 ИСПОЛНИТЕЛИ – Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова – институт АО “НИЦ “Строительство” (НИИОСП им.Н.М.Герсеванова)

2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) “Строительство”

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 24.13330.2010

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячно издаваемых информационных указателях “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте разработчика (Минрегион России) в сети Интернет

ВНЕСЕНЫ правки на основании информации об опечатках, опубликованной в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.

Правки внесены изготовителем базы данных

Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017 год; М.: Стандартинформ, 2019

Введение

Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

Читайте также:
Установка подрозетников в бетонные стены и тонкие перегородки из гипсокартона

Разработан НИИОСП им.Н.М.Герсеванова – институтом ОАО “НИЦ “Строительство”: д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн. наук И.В.Колыбин – руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.

Изменение N 2 разработано институтом АО “НИЦ “Строительство” – НИИОСП им.Н.М.Герсеванова (руководители темы – д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский; исполнители – д-р техн. наук Н.З.Готман, д-р техн. наук Л.Р.Ставницер, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук О.А.Шулятьев, канд.техн. наук П.И.Ястребов) при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева.

Изменение N 3 к своду правил подготовлено АО “НИЦ “Строительство” – НИИОСП им.Н.М.Герсеванова (руководители темы – д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский, д-р техн. наук Н.З.Готман, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.В.Сёмкин, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов, при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева).

1 Область применения

Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее – сооружений).

Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.

2 Нормативные ссылки

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент

ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент

ГОСТ 9463-2016 Лесоматериалы круглые хвойных пород. Технические условия

ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 19804-2012 Сваи железобетонные заводского изготовления. Общие технические условия

ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

СП 14.13330.2018 “СНиП II-7-81* Строительство в сейсмических районах”

СП 20.13330.2016 “СНиП 2.01.07-85* Нагрузки и воздействия” (с изменением N 1)

СП 21.13330.2012 “СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах” (с изменением N 1)

СП 22.13330.2016 “СНиП 2.02.01-83* Основания зданий и сооружений”

СП 25.13330.2012 “СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах” (с изменением N 1)

СП 26.13330.2012 “СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками” (с изменением N 1)

СП 28.13330.2017 “СНиП 2.03.11-85 Защита строительных конструкций от коррозии” (с изменением N 1)

СП 38.13330.2018 “СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)”

Читайте также:
Флокс Друммонда (44 фото): выращивание в открытом грунте, посадка и уход. Однолетник он или многолетник? Описание смеси семян «Гобелен» и крупноцветковых однолетних сортов

СП 40.13330.2012 “СНиП 2.06.06-85 Плотины бетонные и железобетонные”

СП 41.13330.2012 “СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений”

СП 47.13330.2016 “СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения”

СП 58.13330.2012 “СНиП 33-01-2003 Гидротехнические сооружения. Основные положения” (с изменением N 1)

СП 63.13330.2012 “СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения” (с изменениями N 1, 2, 3)

СП 64.13330.2017 “СНиП II-25-80 Деревянные конструкции” (с изменением N 1)

СП 71.13330.2017 “СНиП 3.04.01-87 Изоляционные и отделочные покрытия”

СП 126.13330.2017 “СНиП 3.01.03-84 Геодезические работы в строительстве”

СП 131.13330.2012 “СНиП 23-01-99* Строительная климатология” (с изменениями N 1, 2)

Примечание – При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины и определения

Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 Общие положения

4.1 Основное назначение свай – это прорезка залегающих с поверхности слабых слоев грунта и передача действующей нагрузки на нижележащие слои грунта, обладающие более высокими механическими показателями. Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;

г) действующих на фундаменты нагрузок;

д) условий существующей застройки и влияния на нее нового строительства;

Сваи. Допустимые смещения в плане и отметке оголовка по СП

  • в разделе 12 СП 45.13330.2017 Земляные сооружения, основания и фундаменты. Актуализированная редакция СНиП 3.02.01-87 (обязательный к применению);
  • в разделе 6.2 СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87 (обязательный к применению).

Выделим пункты данных нормативных документов, которые касаются только предельных отклонений сваи в плане и отметке оголовка сваи.

Согласно СП 45.13330.2017:

В соответствии с п.12.8.27 СП 45.13330.2017 при производстве работ по устройству свайных фундаментов, шпунтовых ограждений состав контролируемых показателей, объем и методы контроля должны соответствовать таблице 12.1.

Таблица 12.1 СП 45.13330.2017 (оставлены только пункты с требованиям к свайным фундаментам)

Контроль (метод и объем)

1 Установка на место погружения свай размером по диагонали или диаметру, м:

Без кондуктора, мм

С кондуктором, мм

Измерительный, каждая свая

2 Величина отказа забиваемых свай

Не должна превышать расчетной величины

Читайте также:
Установка духового электрического шкафа своими руками. Установка и подключение духового шкафа своими руками

3 Амплитуда колебаний в конце вибропогружения свай и свай-оболочек

Измерительный, каждая свая

4 Положение в плане забивных свай диаметром или стороной сечения до 0,5 м включ.:

а) однорядное расположение свай:

поперек оси свайного ряда

вдоль оси свайного ряда

б) кустов и лент с расположением свай в два и три ряда:

крайних свай поперек оси свайного ряда

остальных свай и крайних свай вдоль свайного ряда

в) сплошное свайное поле под всем зданием или сооружением:

г) одиночные сваи

5 Положение в плане забивных, набивных и буронабивных свай диаметром более 0,5 м:

б) вдоль ряда при кустовом расположении свай

в) для одиночных полых круглых свай под колонны

6 Положение свай, расположенных по

Измерительный, каждая свая

В уровне поверхности суши

В уровне акватории

а) в два ряда и более

7 Отметки голов свай:

а) с монолитным ростверком

б) со сборным ростверком

в) безростверковый фундамент со сборным оголовком

8 Вертикальность оси забивных свай, кроме свай-стоек

Измерительный, 20% свай, выбранных случайным образом

11 Размеры скважин и уширений буронабивных свай:

а) отметки устья, забоя и уширений

То же, каждая скважина, по отметкам на буровом оборудовании

б) диаметр скважины

То же, 20% принимаемых скважин, выбранных случайным образом

в) диаметр уширения

г) вертикальность оси скважины

12 Расположение скважин в плане

15 Глубина скважин под сваи-стойки, устанавливаемые буроопускным способом, для ростверка

Отклонения не должны превышать, см:

Измерительный, каждая свая по отметке головы сваи, установленной в скважину

16 Требования к головам свай, кроме свай, на которые нагрузки передаются непосредственно без оголовка (платформенный стык)

Торцы должны быть горизонтальными с отклонениями не более 5°, ширина сколов бетона по периметру сваи не должна превышать 50 мм, клиновидные сколы по углам должны быть не глубже 35 мм и длиной не менее чем на 30 мм короче глубины заделки

Технический осмотр, каждая свая

17 Требования к головам свай, на которые нагрузки передаются непосредственно без оголовка (платформенный стык)

Торцы должны быть горизонтальными с отклонениями не более 0,02, не иметь сколов бетона по периметру шириной более 25 мм, клиновидных сколов углов на глубину более 15 мм

d — диаметр круглой сваи или меньшая сторона прямоугольной.

Примечание — Предельные отклонения и методы их контроля для свайных элементов гидротехнических морских и речных транспортных сооружений определяются согласно [СНиП 3.07.02-87 Гидротехнические морские и речные транспортные сооружения].

Согласно СП 70.13330.2012:

Контроль качества погружения в разные грунты свай и свай-оболочек приведены в таблице 6.2.

Таблица 6.2 СП 70.13330.2012 (оставлены только пункты с требованиям к положению свай)

Величина параметра, мм

Контроль (метод, объем, вид регистрации)

1 Смещение в плане центров свай и оболочек от проектного положения в уровне низа ростверка или насадки не должны превышать:

Измерительный, геодезическая исполнительная схема

а) для свай квадратного и круглого поперечного сечений размером не более 0,6 м (стороны квадрата, меньшей стороны прямоугольника или диаметра) при монолитном ростверке или насадке, в долях стороны или диаметра:

при расположении их в фундаменте в один ряд по фасаду:

вдоль здания или сооружения

поперек здания или сооружения

при расположении свай в два ряда и более по фасаду моста:

для крайних рядов — вдоль здания или сооружения

для средних рядов — вдоль здания или сооружения

поперек здания или сооружения

Читайте также:
Чем и как можно отстирать следы тонального крема на белой и цветной одежде?

б) для свай квадратного, прямоугольного и круглого поперечного сечений размером не более 0,6 м (независимо от числа рядов) при сборных ростверках и насадках с обязательным применением направляющих устройств (каркасов, кондукторов, стрел)

в) для свай-оболочек диаметром более 0,6 м до 3 м, погруженных с отклонениями, в долях диаметра, не должны превышать:

без применения направляющих устройств:

для одиночных и при расположении в один ряд по фасаду здания или сооружения

при расположении в 2 ряда и более

1 Значения допускаемых отклонений от проектного положения в плане приведены для свайных элементов (свай и свай-оболочек), используемых в фундаментах и безростверковых опорах с бетонируемым на месте соответственно ростверком или насадкой. В приведенные значения допускаемых отклонений от проектного положения в плане свайных элементов включены значения смещения их в уровне низа ростверка или насадки вследствие отклонения элементов от вертикали или изменения наклона.

Значения допускаемого изменения тангенса угла от вертикали (от проектного положения) наклонных свайных элементов не должно превышать 200:1 при расположении их в один ряд и 100:1 — в два ряда и более.

2 Для фундаментов и безростверковых опор со сборными ростверком или насадкой, соединяемых со свайными элементами с помощью омоноличенных бетоном выпусков стержней продольной арматуры, значения допускаемых отклонений в плане от проектного положения свайных элементов в уровне низа ростверка или насадки следует принимать до 5 см.

При сборных ростверке или насадке, соединяемых со сваями или сваями-оболочками сварными болтовыми комбинированными стыками, значения допускаемых отклонений принимают в соответствии с проектом.

3 Число свайных элементов с предельными значениями допускаемых отклонений не должно превышать 25% для однорядных фундаментов или опор и 40% — для двух- и многорядных фундаментов.

Контроль при устройстве свайных фундаментов

Состав операций и средства контроля

Технические требования и предельные отклонения

СНиП 3.02.01-87 “Земляные сооружения, основания и фундаменты.”, п. 11.6, табл. 18 (выдержки из таблицы)

СП 45.13330.2012 “Земляные сооружения, основания и фундаменты.”, п. 12.7.5, табл. 12.1 (выдержки из таблицы)

Технические требования Предельные отклонения Контроль (метод и объем)
1. Установка на место погружения свай размером по диагонали или диаметру, м: Без кондуктора, мм С кондуктором, мм Измерительный, каждая свая
до 0,5 ± 10 ± 5
0,6 – 1,0 ± 20 ± 10
свыше 1,0 ± 30 ± 12
2. Величина отказа забиваемых свай Не должна превышать расчетной величины То же
3. Амплитуда колебаний в конце вибропогружения свай и свай-оболочек То же То же
4. Положение в плане забивных свай диаметром или стороной сечения до 0,5 м включительно: То же
а) однорядное расположение свай:
поперек оси свайного ряда ± 0,2 d
вдоль оси свайного ряда ± 0,3 d
б) кустов и лент с расположением свай в два и три ряда:
крайних свай поперек оси свайного ряда ± 0,2 d
остальных свай и крайних свай вдоль свайного ряда ± 0,3 d
в) сплошное свайное поле под все зданием или сооружением:
крайние сваи ± 0,2 d
средние сваи ± 0,4 d
г) одиночные сваи ± 5 см
д) сваи-колонны ± 3 см
5. Положение в плане забивных, набивных и буронабивных свай диаметром более 0,5 м: То же
а) поперек ряда ± 10 см
б) вдоль ряда при кустовом расположении свай ± 15 см
в) для одиночных полых круглых свай под колонны ± 8 см
Читайте также:
Эффектные формы на ваших стенах: разнообразие обоев с волнами и зигзагами
6. Положение свай, расположенных по фасаду моста: В плане Наклон оси То же
в уровне
пов-ти
суши
в уровне
аква-
тории
а) в два ряда и более ± 0,05 d ± 0,1 d 100:1
б) в один ряд ± 0,02 d ± 0,04 d 200:1
7. Отметки голов свай: То же
а) с монолитным ростверком ± 3 см
б) со сборным ростверком ± 1 см
в) безростверковый фундамент со сборным оголовком ± 5 см
г) сваи-колонны – 3 см ( ± 3 см в СП )
8. Вертикальность оси забивных свай кроме свай-стоек ± 2 % Измерительный, 20 % свай, выбранных
случайным образом
13. Сплошность ствола свай, выполненных методом подводного бетонирования Ствол сваи не должен иметь нарушений сплошности Измерительный, испытание образцов, взятых из выбуренных в сваях кернов или другим способом
14. Сплошность ствола полых набивных свай Ствол не должен иметь вывалов бетона площадью свыше 100 см2 или обнажений рабочей арматуры Визуальный, каждая свая
He допускается!

– погружать сваи с трещинами более 0,3 мм.

Требования к качеству применяемых конструкций

ГОСТ 19804-91 “Сваи железобетонные. Технические условия.” , п. 1.3.11, табл. 3

ГОСТ 19804-2012 “Сваи железобетонные заводского изготовления.” , п. 6.13, табл. 3

На поверхности свай не допускаются:
  • раковины диаметром 15 (20 новый ГОСТ) мм и глубиной 5 (10 новый ГОСТ) мм;
  • наплывы бетона высотой более 5 мм;
  • местные околы бетона на углах свай глубиной более 10 (20 новый ГОСТ) мм и общей длиной более 50 (100 новый ГОСТ) мм на 1 м свай;
  • околы бетона и раковины в торце сваи;
  • трещины, за исключением усадочных, шириной более 0,1 мм.
Маркировка

На боковой поверхности сваи на расстоянии 50 см от торца или на торце должны быть нанесены несмываемой краской:

  • товарный знак предприятия-изготовителя;
  • марка сваи;
  • дата изготовления сваи;
  • штамп ОТК;
  • масса сваи.

Каждая партия свай должна сопровождаться установленной формы документом о качестве.

Сваи должны храниться рассортированными по маркам в штабелях высотой не более 2,5 м, горизонтальными рядами, остриями в одну сторону. Между горизонтальными рядами свай должны быть уложены деревянные прокладки, расположенные рядом с подъемными петлями или, в случае отсутствия петель, в местах, предусмотренных для захвата свай при их транспортировании. Прокладки должны быть расположены по вертикали одна над другой, толщина прокладок должна быть на 20 мм больше высоты петель.

Указания по производству работ

СНиП 3.02.01-87 “Земляные сооружения, основания и фундаменты.”, пп. 11.5, 11.10

Величина отказа забиваемых свай или амплитуда колебаний в конце вибропогружения свай не должна превышать расчетную величину. Отказ свай в конце забивки следует измерять с точностью до 0,1 см.

Сваи длиной до 10 м, недопогруженные более чем на 15 % проектной глубины, и сваи большей длины, недопогруженные более чем на 10 % проектной глубины, но давшие отказ равный или менее расчетного, должны быть подвергнуты обследованию для выяснения причин, затрудняющих погружение, на основании которого должно быть принято решение о возможности использования имеющихся свай или погружения дополнительных.

При поломке свай и в случае вынужденного погружения ниже проектной отметки следует по согласованию с проектной организацией нарастить их монолитным железобетоном.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: