Стабилизатор оборотов коллекторного двигателя 220в

Регулятор оборотов электродвигателя 220в без потери мощности


Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Коллекторный двигатель и регулировка его оборотов

При эксплуатации коллекторных электродвигателей нередко возникает необходимость в регулировании оборотов устройства. Важно при этом не снизить общие показатели мотора, чтобы работа не пошла насмарку. Рассмотрим же детально особенности самостоятельного регулирования.

Силовые агрегаты данного типа активно используются в бытовой электрической технике, инструментах: стиральных машинах, болгарках, пылесосах, дрелях, квадрокоптерах и др. это обусловливается высокой результативностью приборов, которые демонстрируют большое число оборотов и высоким крутящим моментом (также и пусковым). Данных технических характеристик с лихвой хватает на обеспечения работы техники и инструментов на требуемом уровне.

Сами моторы работают от сетей как постоянного, так и переменного токов, от обычных бытовых сетей. Чтобы осуществить управление скоростями оборотов ротора такого двигателя, необходимо использовать специальные регуляторы. При этом потери в мощностях будут минимальными.

Читайте также:
Телескопические направляющие: современные модели конструкции и варианты монтажа (85 фото)

Общие параметры

Принцип работы и общая конструкция таких силовых агрегатов известны большинству, ведь при создании или модернизации конструкции не обойтись без познаний в данной категории. Состоит мотор из таких ключевых элементов:

  • ротора;
  • статора;
  • коммутационного узла щеточно-коллекторного типа.

При подаче питания на ротор и статор, на каждом из них образовываются магнитные поля, которые взаимодействуют между собой. Это в свою очередь вызывает вращения у ротора.

Подача питания на этот компонент осуществляется с применением графитовых щеток, которые плотно прилегают к ламелям коллектора. Чтобы изменить направленность оборотов ротора, нужно поменять положение фаз напряжения на одном из двух элементов: статоре или роторе.

Обмотки этих приспособлений могут получать питание от источников, или подключаться друг к другу параллельно. Именно на основе этой особенности силовые агрегаты классифицируются на параллельные и последовательные. От этого зависит способ возбуждения медных обмоток.

Если говорить про коллекторные моторы последовательного типа, то именно они чаще всего применяются в бытовых электрических приборах. Это обусловливается тем, что именно такое возбуждение дает возможность получать самый устойчивый к перегрузкам мотор.

Регуляторы стандартные

Что касается данных компонентов, то они реализуются множеством способов. Первая и самая простая схема – тиристорная. Такая технология применяется в бытовых приборах: стиральных машинах, дрелях, шуруповертах, пылесосах, и др. С легкостью подключаются к сетям переменного тока, в том числе и бытового назначения.

Работа этой схемы довольно простая: на всех участках сетевых токов, конденсатор получает ток при помощи резистора. Зарядка осуществляется до уровня открытия динистора, который подключен к регулирующим электродам сисмстора. После этого последний открывается и через него проходит ток к нагрузкам КД.

Схема дает возможность продуктивно регулировать время подзарядки конденсатора в управленческой цепи, а также определяя среднюю мощность напряжения, подаваемую на мотор.

Давайте упорядочим все шаги работы данной схемы. Вот они:

  1. подача тока к конденсатору от источника питания на 220 вольт;
  2. напряжение для пробоя динистора подается также, но уже через резистор переменного типа;
  3. непосредственно пробой;
  4. открытие симистора. Компонент работает непосредственно с показателями нагрузки;
  5. чем выше напряжение – тем чаще симистор открывается.

Данная технология обеспечивает простое, но в то же время эффективное регулирование интенсивности оборотов. Но, в то же время применение стандартной схемы не обеспечивает обратной связи, что также стоит учитывать при ее реализации. Исходя из этого, нужно также знать, что при изменении показателей нагрузки, параллельно будут нуждаться в настройке обороты мотора.

Схема симисторная

Этот механизм имеет много общих параметров с диммером, применяемом для регулирования уровня яркости ламп накалывания. Обратная связь также отсутствует. Реализовать реверс по току моно, но с применением вспомогательной электроники. Это делается для того, чтобы беспрепятственно удерживать мощность на заданных показателях, не допуская перегревов и перегрузок.

Реостатная схема

Относится к модифицированным схемам, но, несмотря на это, ее реализация также отличается простотой. С помощью получается стабилизировать обороты, а также рассеивать огромное количество вырабатываемого тепла. Регулировка осуществляется с помощью радиатора, который нужно заранее заготовить. Надо обеспечить и эффективный отвод тепла, что приводит к потерям энергии и, как следствие – коэффициента полезного действия. Для того чтобы предотвратить эти недостатки, рекомендуют применять активное охлаждение на постоянной основе.

Полученный регулятор ограничитель отличается своей эффективностью, при реализации смены числа оборотов двигателя. Также достичь производительности помогут силовые транзисторы, «отбирающие» определенную долю напряжения. Это обусловливается тем, что количество тока из сети 220В доходит до мотора в меньшем объеме, благодаря этому, силовой агрегат не сталкивается с большими нагрузками.

Интегральная

Стабилизация также относится к модифицированным схемам. Здесь в основе процесса регулирования лежит таймер интегрального действия. Его основная задача – контролировать уровни нагрузки на электродвигатель. Здесь также находят свое применение транзисторы. Особенность обусловливается микроконтроллером, входящим в состав системы, при этом, обладающим высокими параметрами выходного напряжения.

В ситуациях, когда имеет место нагрузка в 0,1 ампер, все токи поступают напрямую на плату, обходя транзисторы. Чтобы обеспечить эффективную работу регулятора, необходимо, чтобы на затворе было напряжение 12в. Следовательно, для слаженной работы, электрическая цепь и уровень напряжения в источнике питания должны соответствовать этому диапазону. Ресурс регулятора позволяет устанавливать компонент в мощных модификациях, для точного и быстрого регулирования их работы.

Самостоятельное создание регулятора

Заводские регуляторы представлены в широком ассортименте, как в интернете, так и обыкновенных магазинах. Но, если у вас нет желания приобретать готовый компонент и вы хотите собрать его самостоятельно – это реально осуществить. Чтобы задача была успешной – необходимо следовать алгоритму конструкции и иметь в наличии все необходимые компоненты.

  • проводки;
  • готовая схема;
  • конденсаторные схемы;
  • тиристор;
  • резистор;
  • паяльник.

Ориентируясь на схему компоновки, мощностной и оборотный регулятор будет отвечать за контроль первого полупериода. Самодельный стабилизатор имеет такой алгоритм работы (пример нашей модели):

  1. прибор, подключенный к стандартной сети питания на 220в, принимает ток на конденсатор;
  2. компонент сразу же срабатывает, после получения заряда;
  3. передача нагрузки к резисторам и нижним кабелям;
  4. соединение положительного конденсаторного контакта к тиристорному электроду;
  5. подача одного заряда напряжения на достаточном уровне;
  6. открытие второго полупроводника;
  7. конденсатор подает на тиристор нагрузку, он в свою очередь пропускает ее через себя;
  8. конденсатор разряжается;
  9. повторение полупериода;
Читайте также:
Финские деревянные окна со стеклопакетами

Если мощность двигателя постоянного или переменного тока большая – регулятор обеспечивает экономную работу устройства. Для использования приспособления в своих бытовых, мощности и ресурса хватает. Но, когда нужно осуществлять регулирование оборотов без потери мощности и более крупных и производительных агрегатов, тогда стоит обратить внимание все же на заводские модификации. Несмотря на то, что такой вариант получится дороже, он обеспечит 100%-ю работоспособность и надежность.

А сейчас давайте рассмотрим другие, нестандартные, но довольно распространенные методы регулировки и стабилизации.

Способ 2

Здесь используется микросхема типа TDA 1085 со стандартной платой. Можно при желании создать собственную, «модернизировав» и изменив неподходящие элементы. К примеру, можно применять двухстороннюю печатную плату. Конденсаторные и резисторные детали могут применяться при поверхностном монтаже. Рекомендуется развести друг от друга низко- и высоковольтные цепи. А «земля» должна разводиться с учетом параметров микросхемы.

В результате получается компактная двусторонняя плата, обеспечивающая точное регулирование.

Частотная регулировка

Для решения этой задачи применяются частотные преобразователи (драйверы, инверторы), которые присоединяются к прибору. Они обеспечивают выпрямление напряжения, поступающего от источника. Агрегаты внутри формируют напряжение и частоты на необходимых уровнях. Далее осуществляется подача этих параметров на эл двигатель.

Стабилизация коллекторного двигателя 12в Все характеристики, необходимые для регулирования работы, частотник рассчитывает сам, ориентируясь на внутренние алгоритмы, которые установлены производителем.

Из преимуществ такого способа стоит выделить:

  • быстрое достижение плавности регулировки частот оборотов электрического мотора;
  • возможность изменения скоростей и направлений вращения моторов;
  • требуемые параметры поддерживаются самостоятельно;
  • экономические выгоды.

Из слабых сторон стоит выделить обязательность наличия преобразователя, который нужно приобретать отдельно. Но, справедливости ради отметим, что цена на частотники невысокая и они легко впишутся в бюджет любого дома, хозяйства, предприятия.

Изменение числа полюсов

Уменьшение или увеличение количества пар полюсов – еще один эффективный способ провести регулировку. Этот вариант особо актуален для моделей двигателей многоскоростного действия со сложными роторными обмотками. Данные элементы разделены на определенные группы и чередуются в процессе работы. Осуществляется это посредством коммутации, подключением последовательным или параллельным способом.

К преимуществам такого варианта регулировки относят:

  • высокий КПД силового агрегата;
  • требовательные механические выходные характеристики.

Стоимость реализации – одна из самых высоких, если сравнивать с другими технологиями. Вес и размеры готовой установки также немаленькие, что требует наличия свободного места для монтажа. Сам мониторинг оборотов осуществляется со ступенью в 1500 – 3000 оборотов в минуту.

Проведение регулирование в моторах АС

Устройства, работающие от переменного напряжения, также поддерживают регулирование оборотов. Рассмотрим вкратце основные способы такого управления, характерные для АС модификаций с фазными роторами.

При помощи напряжения

Для этого используются автотрансформаторы типа ЛАТР, которые осуществляют изменение напряжения на моторных обмотках. Таким образом производится и регулирование оборотов вала.

Метод является подходящим также и для вариаций с короткозамкнутыми роторами. Оператор имеет возможность проводить управление в пределах от минимальных до номинальных параметров двигателя.

Определение сопротивления

Переменное сопротивление реостата (или несколько таких явлений) реализуется непосредственно в цепи ротора. Оно воздействует на роторное поле и показатели тока, из-за чего получается изменять величины скольжения и точное число оборотов электродвигателя. Существует закономерность: чем уровень тока меньше, тем выше показатель скольжения двигателя и меньше скорость.

  • широкий диапазон регулирования оборотов электрического оборудования;
  • сдержанные выходные характеристики машины.

К недостаткам относят:

  • уменьшение продуктивности мотора;
  • общее снижение рабочих параметров механизма.

Применение двойного питания

Здесь используются двигатели с двойным питанием, подающимся через вентильные приспособления. Основной упор делается на изменение показателей скольжения. При регулировании работы крупных специализированных машин, компонент подает и регулирует величину ЭДС (электродвижущей силы) на ротор от отдельно выбранных источников напряжения.

Вывод

При подаче напряжения у асинхронных моделей моторов наблюдаются рывки ротора. Это явление негативно влияет на работу, как самого агрегата, так и его привода. Именно поэтому, регулировка осуществляется по принципу плавного старта. Он обеспечивается такими факторами:

  • старт посредством ЛАТР;
  • разгон и работу мотора путем переключения обмоток по схемам треугольник/звезда;
  • применение защитных устройств, например, частотного преобразователя.

Важно при регулировании оборотов не потерять в мощности. Применение вышеописанных методов позволит определить вращения без снижения продуктивности. Широкий выбор заводских моделей, но, можно реализовать деталь и самостоятельно.

Регулятор оборотов коллекторного двигателя — как устроен, как сделать своими руками, инструкция со схемой

  1. Принцип работы и разновидности коллекторных двигателей
  2. Устройство регулятора
  3. Стандартное устройство
  4. Изменённые схемы
  5. Видео: устройство регулятора оборотов с поддержанием мощности
  6. Обзор типичных схем
  7. Как сделать своими руками
Читайте также:
Уголок арочный пластиковый

В любом современном электроинструменте или бытовом приборе используется коллекторный двигатель. Это связано с их универсальностью, т. е. способностью работать как от переменного, так и от постоянного напряжения. Ещё одно преимущество заключается эффективном пусковом моменте.

Однако высокая частота оборотов коллекторного двигателя устраивает далеко не всех пользователей. Для плавности пуска и возможности менять частоту вращений был изобретён регулятор, который вполне возможно изготовить своими руками.

Принцип работы и разновидности коллекторных двигателей

Каждый электродвигатель состоит из коллектора, статора, ротора и щёток. Принцип его работы довольно прост:

  1. Ток подаётся на статор и ротор, соединённые друг с другом.
  2. Образуется магнитное поле.
  3. Из-за воздействия магнитного напряжения, ротор начинает вращаться.
  4. Щётки (обычно их изготавливают из графита) передают напряжение на ротор.
  5. При изменении направления тока в статоре или роторе, вращение вала происходит в другую сторону.

Помимо стандартного устройства также существуют:

  • Электродвигатели последовательного возбуждения — обладают большей устойчивостью к перегрузкам (чаще всего используются в бытовых устройствах).
  • Изделия параллельного возбуждения — имеют большее количество витков и небольшое сопротивление.
  • Однофазные двигатели — лёгкость в изготовлении и широкий диапазон для применения, но низкий КПД.

Устройство регулятора

В мире существует множество схем таких устройств. Тем не менее всех их можно разделить на 2 группы: стандартные и модифицированные изделия.

Стандартное устройство

Типичные изделия отличаются простотой в изготовлении идинистора, хорошей надёжностью при изменении оборотов двигателя. Как правило, такие модели основываются на тиристорных регуляторах. Принцип работы подобных схем достаточно прост:

  1. Заряд идёт на конденсатор.
  2. Через переменный резистор идёт напряжение пробоя Динистор.
  3. Далее он «пробивается».
  4. «Открывается » симистор, который отвечает за нагрузку.
  5. Чем выше будет напряжение, тем чаще будет «открываться симистор».

Таким образом, происходит регулировка оборотов коллекторного двигателя. В большинстве случаев подобную схему используют в зарубежных бытовых пылесосах. Однако следует знать, что такой регулятор оборотов не обладает обратной связью. Поэтому при изменении нагрузки придётся настраивать обороты электродвигателя.

Изменённые схемы

Конечно, стандартное устройство устраивает многих любителей регуляторов оборотов «покопаться» в электронике. Однако, без прогресса и улучшения изделий мы бы до сих пор жили в каменном веке. Поэтому постоянно изобретаются более интересные схемы, которые с удовольствием применяют многие производители.

Чаще всего используются реостатные и интегральные регуляторы. Как понятно из названия, первый вариант основан на реостатной схеме. Во втором же случае применяется интегральный таймер.

Реостатные отличаются эффективностью в смене количества оборотов коллекторного двигателя. Высокая эффективность обусловлена силовыми транзисторами, которые забирают часть напряжения. Таким образом, снижается поступление тока и двигатель работает с меньшим усердием.

Видео: устройство регулятора оборотов с поддержанием мощности

Главный недостаток такой схемы заключается в большом объёме выделяемого тепла. Поэтому для бесперебойной работы, регулятор должен постоянно охлаждаться. Притом охлаждение устройства должно быть интенсивным.

Иной подход реализован в интегральном регуляторе, где за нагрузку отвечает интегральный таймер. Как правило, в подобных схемах используются транзисторы практически любых наименований. Это связано с тем, что в составе имеется микросхема, обладающая большими значениями выходного тока.

Если нагрузка меньше 0,1 ампера, то всё напряжение поступает прямо на микросхему в обход транзисторов. Однако для эффективной работы регулятора необходимо, чтобы на затворе было напряжение 12В. Поэтому электроцепь и напряжение самого питания должно соответствовать этому диапазону.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Особенности первого варианта:

  • На ШИМ транзисторе имеется генератор пилообразного напряжения с частотой 150 Гц.
  • В роли компаратора выступает операционный усилитель.
  • Для изменения скорости используют переменный резистор, который управляет длительностью импульсов.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Как сделать своими руками

Если нет желания тратиться на приобретение готового устройства, его можно изготовить самостоятельно. Таким образом, можно не только сэкономить деньги, но и получить полезный опыт. Итак, для изготовления тиристорного регулятора потребуется:

  • паяльник (для проверки работоспособности);
  • провода;
  • тиристор, конденсаторы и резисторы;
  • схема.

Как видно по схеме, регулятором контролируется только 1 полупериод. Однако для тестирования работоспособности на обычном паяльнике этого будет вполне достаточно.

Если знаний по расшифровке схемы недостаточно, можно ознакомиться с текстовым вариантом:

  1. Питание от сети идёт на конденсатор.
  2. Конденсатор получает полный заряд и начинает работу.
  3. Нагрузка передаётся на нижний кабель и резисторы.
  4. С положительным контактом конденсатора соединён электрод тиристора.
  5. Один достаточный заряд напряжения
  6. Открывается второй полупроводник.
  7. Тиристор пропускает через себя нагрузку, полученную с конденсатора.
  8. Конденсатор разряжается и повторяет полупериод.
Читайте также:
Фото одноэтажных домов с пристроенной террасой

Использование регуляторов позволяет более экономично использовать электродвигатели. В определённых ситуациях такое устройство можно изготовить самостоятельно. Однако для более серьёзных целей (например, контроля оборудования для отопления) лучше приобрести готовую модель. Благо, на рынке есть широкий выбор таких изделий, а цена вполне демократичная.

Регулятор оборотов коллекторного двигателя без потерь

Для выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать – момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.

  • Особенности регулирования скорости
  • Обобщенная схема регулятора
  • Разновидности коллекторных двигателей
  • Конструкция мотора
  • Выбор схемы
  • Особенности конструкции
  • Принцип управления

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:

  • Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры. Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя. Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

При увеличении тока в цепи двигателя, включенного по стандартной схеме, обмотка возбуждения включена последовательно с якорем. При таком включении мы увеличиваем и магнитное поле, воздействующее на якорь, что позволяет добиться линейности характеристик. Если поле будет неизменным, то получить хорошую динамику сложнее, не говоря уже о больших потерях мощности. Такие двигатели лучше использовать на низких скоростях, так как ими удобнее управлять на малых дискретных перемещениях.

Читайте также:
Техноруф В60: технические характеристики, плотность

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится. Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования. Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров. Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования. Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.
Читайте также:
Электротехнический плинтус с розетками

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

Шим регулятор для постоянных двигателей. Цифровой ШИМ регулятор оборотов коллекторного двигателя

Зачем они нужны


Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.
Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

  • Коллектор,
  • Щетки,
  • Ротор,
  • Статор.

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При изменении силы тока, эта частота может изменяться между 3 кГц и 5 кГц. Переменный резистор R2 служит для регулировки тока. При использовании электродвигателя в бытовых условиях, рекомендуется использовать регулятор стандартного типа.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева.

При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В

оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.
Читайте также:
Это поможет вам совершить выбор рулонных штор на кухню

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

ШИМ-регулятор оборотов электродвигателей коллекторного типа

Для регулировки частоты вращения маломощных электродвигателей коллекторного типа обычно применяют резистор, который включают последовательно с двигателем. Но такой способ включения обеспечивает очень низкий КПД, а самое главное не позволяет осуществлять плавную регулировку оборотов (найти переменный резистор достаточной мощности на несколько десятков Ом совсем не просто). А самый главный недостаток такого способа, это то, что иногда происходит остановка ротора при снижении напряжения питания.

ШИМ-регуляторы, речь о которых пойдет в этой статье, позволяют осуществлять плавную регулировку оборотов без перечисленных выше недостатков. Помимо этого ШИМ-регуляторы так же можно применять и для регулировки яркости ламп накаливания.

На рис.1 приведена схема одного из таких ШИМ-регуляторов. Полевой транзистор VT1 является генератором пилообразного напряжения (с частотой повторения 150 Гц), а операционный усилитель на микросхеме DA1 работает как компаратор, формирующий ШИМ-сигнал на базе транзистора VT2. Частота вращения регулируется переменным резистором R5, изменяющим ширину импульсов. Благодаря тому, что их амплитуда равна напряжению питания, электродвигатель не будет «тормозить», а кроме этого можно добиться более медленного вращения, чем в обычном режиме.

Схема ШИМ регуляторов на рис.2 аналогична предыдущей, но задающий генератор здесь выполнен на операционном усилителе (ОУ) DA1. Этот ОУ функционирует в роли генератора импульсов напряжения треугольной формы с частотой повторения 500 Гц. Переменный резистор R7 позволяет осуществлять плавную регулировку вращения.

На рис.3. представлена весьма интересная схема регулятора. Этот ШИМ регулятор выполнен на интегральном таймере NE555. Задающий генератор имеет частоту повторения 500 Гц. Длительность импульсов, а, следовательно, и частоту вращения ротора электродвигателя можно регулировать в диапазоне от 2 до 98 % периода повторения. Выход генератора ШИМ регулятора на таймере NE555 подключен к усилителю тока, выполненному на транзисторе VT1 и собственно управляет электродвигателем М1.

Главным недостатком схем рассмотренных выше является отсутствие элементов стабилизации частоты вращения вала при изменении нагрузки. А вот следующая схема, показанная на рис.4., поможет решить эту проблему.

Данный ШИМ регулятор как и большинство аналогичных устройств, имеет задающий генератор импульсов напряжения треугольной формы (частота повторения 2 кГц), выполненный на DA1.1.DA1.2, компаратор на DA1.3, электронный ключ на транзисторе VT1, а также регулятор скважности импульсов, а по сути частоты вращения электродвигателя — R6. Особенностью схемы является наличие положительной обратной связи посредством резисторов R12, R11, диода VD1,конденсатора C2, и DA1.4, которая обеспечивает постоянную частоты вращения вала электродвигателя при изменении нагрузки. При подключении ШИМ регулятора к конкретному электродвигателю при помощи резистора R12 производится регулировка глубины ПОС, при которой не возникает автоколебаний частоты вращения при увеличении или уменьшении нагрузки на вал двигателя.

Элементная база. В приведенных в статье схемах можно использовать следующие аналоги деталей: транзистор КТ117А можно заменить на КТ117Б-Г или как вариант на 2N2646; КТ817Б — КТ815, КТ805; микросхему К140УД7 на К140УД6, или КР544УД1, ТL071, TL081; таймер NE555 на С555, или КР1006ВИ1; микросхему TL074 на TL064, или TL084, LM324. Если необходимо подключить к ШИМ-регулятору более мощную нагрузку ключевой транзистор КТ817 необходимо заменить более мощным полевым транзистором, как вариант, IRF3905 или подобным. Указанный транзистор способен пропускать токи до 50А.
Подготовлено по материалам статьи: А.В. Тимошенко, Радіоаматор №4, 2008г.
Оцените статью Рейтинг 3.67 (21 Голос)

Читайте также:
Стеллаж из профильной трубы своими руками: чертежи и схемы, процесс сборки

20 вещей, которых не должно быть в маленькой квартире

Существует ряд эффективных дизайнерских приемов, которые позволяют визуально расширить пространство в маленькой квартире. Но некоторые предметы или варианты отделки действуют противоположным образом: буквально скрадывают площадь комнаты или высоту потолков, делают дом неуютным. Таких вещей при оформлении интерьера стоит категорически избегать, ведь они могут испортить все усилия дизайнера.

Темные стены

При проведении отделочных работ в небольшой квартире можно применять разнообразные материалы: краску, декоративную штукатурку, обои. Тем не менее, при малых габаритах комнат стоит использовать светлые, пастельные оттенки, ведь слишком темное покрытие будет визуально уменьшать пространство. Даже при условии яркого освещения мрачные стены забирают до 40% лучей, поэтому комната все равно будет казаться затемненной. Аналогичные правила действуют и в отношении иных крупных поверхностей: текстиль, встроенные шкафы, потолки тоже должны быть светлыми. Приветствуются невесомые, полупрозрачные и прозрачные материалы в отделке.

Темные тона визуально уменьшают пространство к содержанию ↑

Обои с большим рисунком и имитация камня

Декор большого размера в маленькой квартире не исключается полностью, но его применение должно быть акцентным. Идеальный вариант — одна полоса обоев, панно, вставка фотообоев, что станет смотреться интересно и привлекательно. Если же оклеить небольшую комнатку обоями с объемным орнаментом полностью, это зрительно раздробит помещение, уменьшит его, сделает акцент на недостаточных габаритах дома. Также не подходят для подобных квартир слишком рельефные покрытия, в том числе имитирующие камень. Они смотрятся тяжело, что в маленьком пространстве недопустимо.

Обои с крупным рисунком хорошо смотрятся только в просторных помещениях к содержанию ↑

Темная меблировка

Мебель в темных тонах тоже не годится для маленькой квартиры. Обычно она занимает много места (особенно шкафы под потолок, гарнитуры, диваны), поэтому создает впечатление большого темного пятна в комнате. Таким же образом «работает» и мебель с крупным рисунком. В небольшом пространстве стоит отдать предпочтение светлым предметам меблировки, либо приобретать темную, но изящную, малогабаритную мебель и комбинировать ее со светлой отделкой стен и пола.

Темная мебель выглядит слишком громоздко к содержанию ↑

Восточные ковры

Слишком яркий ковер с традиционным восточным орнаментом сразу привлекает к себе внимание, буквально притягивает взгляд. Если в комнате есть еще один столь броский акцент, это будет сильно перегружать ее, станет тяжелым для восприятия. Для маленькой квартиры хорошо подходят однотонные светлые ковры или изделия со скромным рисунком: рамочкой, единичным изображением цветов и т.д. Кроме прочего, восточный ковер практически не вписывается в самые популярные стили и подходит разве что для этно-направления.

Ковры с восточным рисунком в маленькой комнате к содержанию ↑

Множество узоров

Если габариты дома скромные, не стоит использовать для отделки слишком много узорных материалов. Лучший вариант — применить 1–2 предмета с рисунками (например, шторы и декоративные подушки). При перенасыщенности узорных изделий возникнет чувство раздробленности пространства.

Комната с обоями в мелкий цветочек к содержанию ↑

Центральная расстановка мебели

Нередко габаритную мебель ставят в центре комнаты — это известный дизайнерский прием. Обычно так поступают с мягкой мебелью или столом и стульями, креслами. В больших помещениях подобная расстановка поможет в зонировании, а в маленьких — лишь спровоцирует загромождение территории. Лучше всего ставить предметы мебели у стен, чтобы они не мешали ни реально, ни зрительно.

Центральная расстановка мебели не подходит для небольших помещений к содержанию ↑

Шкафы средней высоты

Встроенные или обычные шкафчики высотой до потолка способны визуально удлинять стены, раздвигать границы пространства. Небольшие по высоте предметы мебели как бы расширяют габариты комнаты. Зато средние по высоте шкафы действуют противоположным образом — «обрубают» стены и сжимают без того маленькую комнатку. Кроме прочего, они не несут той практической ценности, что может предоставить высокая мебель.

Низкие шкафы загромождают пространство к содержанию ↑

Открытые стеллажи

Стеллажи с открытыми полками сами по себе способны визуально расширять пространство, придавать ему воздушности. К сожалению, в небольшой квартире они редко остаются пустыми и чаще всего играют роль места хранения для ящичков, книг, ваз, а порой бытовой техники и электроники.

В итоге стена становится пестрой, разноцветной, даже захламленной, что для небольшого помещения является фатальной ошибкой. Поэтому при желании оформить дом стеллажами нужно использовать их в минимальном количестве рядом с закрытой мебелью, чтобы они выполняли сугубо декоративную роль.

Тяжелый текстиль

Тяжелые ткани для штор, накидок, пологов визуально забирают свободное пространство, утяжеляют отделку. Если они еще и темные, то воспринимаются подобно мрачным обоям или краске. Драпировка неудобна и с практической точки зрения, ведь она регулярно собирает пыль и снижает уровень освещенности в доме.

Для небольшой квартиры идеальным вариантом станет легкий тюль, органза, другие полупрозрачные ткани для окон или накидок. Используя текстиль в светлых тонах, можно зрительно расширить помещение, придать ему изящества.

Высокий стол

Нередко в гостиной или спальне устанавливают журнальные столики, которые предназначены для чтения, хранения или применяются в качестве декора. Если помещение маленькое, такая мебель должна быть как можно ниже. Слишком высокий стол «притягивает» к себе потолок, зрительно делает его низким. Более того, даже небольшой по площади, но с длинными ножками стол воспринимается как слишком массивный, тяжелый.

Читайте также:
Узоры и эскизы для геометрической резьбы по дереву. Примеры

Для маленькой комнаты хорошо подойдет низкий журнальный столик к содержанию ↑

Объемная и длинная люстра

Дорогие, массивные люстры отлично смотрятся в больших комнатах с высокими потолками, особенно, если квартира оформляется в классическом стиле. Они выглядят ярко, сразу привлекают к себе внимание, к тому же обеспечивают отличный уровень освещенности. Но такие аристократичные предметы интерьера плохо подходят для комнат небольшой площади. От их использования жилье станет выглядеть еще теснее, скромнее.

Длинные люстры с подвесами и вовсе могут быть неудобными для жильцов. Они мешают обычному передвижению, вызывают неприятное чувство касания головы. Лучше распределить систему освещения по всей комнате, чтобы визуально раздвинуть пространство. Огромные же светильники стоит оставить для больших комнат, где они не нарушат естественные пропорции и действительно станут красивой составляющей интерьера.

Большая низкая люстра в маленькой комнате к содержанию ↑

Многоцветность в оформлении

Если комната имеет малые размеры, не стоит применять при ее отделке более трех цветов гаммы. Когда оттенков слишком много, возникает ненужная пестрота, которая смотрится слишком тяжело, перегружает дизайн, дробит цельное помещение на крошечные части.

Использование большого количества ярких цветов не всегда бывает уместным к содержанию ↑

Центральное освещение

Люстра в центре потолка — традиционное решение для любой квартиры. Тем не менее, слабый уровень освещенности в маленькой квартире способен сгубить все усилия дизайнера по визуальному расширению границ. Кроме центральной люстры, стоит разместить тут светильники по периметру, бра, торшеры или иные типы подходящей подсветки.

Разноуровневое освещение отвлечет от оценки размеров комнаты, сделает ее легче. Кроме того, светильники способны сыграть роль красивых аксессуаров и реально декорировать дом.

Многоуровневый потолок

Полотки из гипсокартона в несколько уровней уже вышли из моды, поэтому в последнее время почти не используются дизайнерами. Для небольшой квартиры они вообще не годятся, поскольку делят и без того ограниченное пространство на крошечные зоны и сильно снижают высоту стен.

Двухярусный потолок снижает высоту стен к содержанию ↑

Массивные двери

Как и мебель, темные, габаритные дверные полотна разрезают комнату на части, зрительно перегружают ее. Они буквально подчеркивают границы помещения, делают их более четкими. Лучше купить раздвижные двери или «гармошки», либо вовсе отказаться от закрытия дверного проема и оставить его пустым.

Темная массивная дверь в спальной комнате к содержанию ↑

Громоздкая мебель

Огромные кухонные гарнитуры, массивные диваны с креслами и обеденные столы отлично подойдут для загородных домов, которые имеют достаточные габариты. Для стандартных квартир они практически не пригодны, ведь высота потолков тут редко бывает значительной. Для маленьких комнат стоит покупать легкие предметы мебели на ножках, компактные или складные модели. Интересным вариантом будет подвесная мебель — тумбы, столики и полочки, закрепленные на стенах.

Громоздкая мебель нелепо смотрится в тесной квартире к содержанию ↑

Контрастное напольное покрытие

Чтобы не испортить дизайн помещения и не вызывать его дробление на зоны, не стоит красить пол яркой краской, укладывать разноцветный или слишком темный ламинат, ковролин. С контрастными решениями в небольшой квартире вообще надо быть осторожнее, ведь они режут глаза. Лучше использовать одно покрытие для всего дома, чтобы не было видно межкомнатных переходов.

Яркий пол в узкой комнате к содержанию ↑

Перегородки

В одно- или двухкомнатной квартире стандартной планировки использовать перегородки нецелесообразно. Обычно это делают лишь из острой практической необходимости, например, для выделения детской зоны. В остальных случаях вариант с перегородками надо оставить квартирам-студиям, ведь они режут пространство. Более правильным будет применение мебели, которая ненавязчиво подчеркнет ту или иную зону, не спровоцировав тесноты.

Зонирование комнаты с помощью перегородки к содержанию ↑

Большие картины

Яркие картины и панно большого размера выглядят так же, как обои с крупным рисунком. Любоваться ими нужно издалека, а в маленькой комнате это невозможно. Стоит расположить на стене комплект из нескольких маленьких картин, фоторамок, что будет смотреться свежо и стильно.

В маленьком помещении лучше ограничиться фоторамками небольших размеров к содержанию ↑

Много декора

Как и в случае с картинами, перегрузка декором в малогабаритном жилье недопустима. Лучше выбрать пару ярких акцентов на фоне нейтральной отделки, поставить минимальное количество действительно красивых и изящных предметов интерьера. Это поможет усилить стилевую направленность и не станет скрадывать без того ограниченное пространство.

Читайте также:
Шовный герметик - утепление швов герметиком в деревянном доме

Соблюдая приведенные советы, можно даже в небольшом помещении использовать интересные дизайнерские приемы, не вызывая сокращения свободной площади. Кроме того, рекомендации позволят улучшить функционал квартиры без ее загромождения и сделать жилье современным и уютным.

12 стоп-идей для маленькой квартиры: чего не надо делать никогда

Главная / Советы и идеи / Дизайн и Декор / 12 стоп-идей для маленькой квартиры: чего не надо делать никогда

Катя Фигаро Mon, 12 Jul 2021 08:00:39 +0300

Чем сложнее задача, тем интереснее искать решение. Интерьер для вашей маленькой квартиры может спроектировать хоть сам Жан Луи Денио, но даже рука мастера не сможет раздвинуть стены. Малогабаритка так и останется малогабариткой, просто станет очень привлекательной и уютной. Однако чтобы своими руками создать интерьер, в котором не захочется думать о количестве квадратных метров, понадобится не так много. Первое, что в этом случае стоит запомнить, это список запретных приёмов. Они только прибавят проблем — вычеркните их из списка планов на ремонт.

Огромные, тяготеющие к классике кресла, чугунные — пусть и антикварные — торшеры, которые можно смело использовать в качестве орудий самообороны, и нераскладывающиеся диваны таят в себе одну на всех суть: скудные функциональные возможности. Всё, что занимает много места и не может быть использовано как минимум в двух направлениях, должно вызвать справедливый вопрос о целесообразности. Маленькая квартира чаще всего не даёт возможности установить кровать и диван одновременно. Приоритеты могут быть разные, впрочем, как и жизненные ситуации. Логичнее подобрать удобный раскладной диван, чем обойтись скромной кушеткой и кроватью с пологом.

Это понятие многомерно. Чем меньше комнатка, тем больше в ней должно быть света, как естественного, так и отражённого. Пометка: светлые оттенки (не зеркала) тоже отражают свет. Потому чем больше в вашей маленькой квартире будет светлых оттенков и света как такового, тем просторнее она будет казаться.

Помните эти фантастические гипсокартонные навесные конструкции, превращающие потолок в подобие космического корабля, зависшего над милой столовой с рюшами? Так вот, это сооружение в пределах небольших помещений создаёт гнетущую атмосферу неотвратимости высшей кары.

Чем больше шагов вы можете сделать в пределах одного помещения, тем больше препятствий ваш организм может преодолеть, ни разу ни подвергнув нервную систему стрессу. Когда же на каждом шагу тело ожидает подвоха в виде порога, подиума или ступеньки, корень валерианы становится любимым продуктом, а мозжечок работает в режиме чрезвычайной ситуации даже по ночам.

Она прекрасна, и это бесспорно. Если каждый ваш день начинается с пересчитывания кристаллов, то никакая сила во вселенной не заставит нас наложить запрет на этот источник вдохновения и жизненных сил. Если же огромная люстра в центре крохотной гостиной кажется вам неплохим решением, мы просим вас ещё раз подумать.

Сложносочинённые композиции из предметов мебели, обилие — пусть даже стеклянных — перегородок, ширм и занавесей режут и без того небольшое пространство, ограничивают движение и сужают стены. Наше однозначное «нет».

Спорный вопрос, но чаще всего в маленькой квартире уместнее выглядят двери со скрытым коробом, максимально соответствующие цвету стен. Массивные резные двери контрастного оттенка будут привлекать излишнее внимание и утяжелять пространство.

Здесь тот же принцип, что и с большими дверьми. Крупный рисунок притягивает к себе внимание, фиксируя его на одной точке, а чем статичнее взгляд, тем очевиднее становятся объёмы пространства. Этот же принцип действует и в обратном направлении — небольшой принт с мелким рисунком заставляет взгляд перемещаться из точки в точку не фиксируясь, а значит, и не замечая метража. По крайней мере какое-то время.

Отвлечь внимание от габаритов пространства при помощи обилия оттенков — не лучшая идея. Аккуратность и гармония в нашем случае — ключевые факторы, на реализацию которых стоит направить усилия. Основного фона и пары дополнительных цветов вполне достаточно для создания яркого оригинального интерьера, в котором хочется жить вне зависимости от его размеров.

Чем больше вещей, тем меньше порядка. Количество поверхностей, на которых скапливается пыль, опять же увеличивается. Объёмы свободного пространства сокращаются, воздуха становится меньше.

Тяжёлые занавеси на окнах хорошо выглядят только на расстоянии. В маленькой квартире лучше обойтись лёгкими полупрозрачными занавесками, пропускающими максимум света.

Дорогая аудио- или видеосистема

Тратить немалые средства на дорогущую технику, которую вы собираетесь разместить в маленькой квартире, не имеет никакого смысла. Сами посудите — чем больше экран телевизора, тем крупнее и заметнее пиксели, чем мощнее звук, тем яростнее он отражается от стен. Разве можно насладиться хорошим звуком при плохой акустике?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: