Теплоотдача стальных труб — это значимый параметр в расчете отопления

Характеристики стальных труб для отопления, расчет веса и теплоотдачи

Стальные водогазопроводные трубы являются самым популярным металлопрокатом широкого применения. Кроме использования для прокладки коммуникаций в соответствии с названием, они успешно выполняют функции отопительных приборов. Из труб вгп изготавливают гладкие и ребристые регистры разной конфигурации, которые по эффективности теплоотдачи не уступают современным радиаторам. Они прекрасно подходят для транспортировки теплоносителя в системах с естественной циркуляцией, при этом попутно участвуя в обогреве помещений.

Устанавливая стальные водогазопроводные трубы для отопления, очень важно знать их основные характеристики. В первую очередь к ним относятся вес и коэффициент теплоотдачи. Тщательно выполнив предварительные расчеты, вы убережете себя от неожиданных сложностей при монтаже и обеспечите требуемый эффект при эксплуатации.

Виды отопительных регистров

Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:

  • Змеевиковые;
  • Секционные.

На рисунке показаны некоторые варианты их конструктивного исполнения.

Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.

Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.

Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.

По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.

Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.

Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Полотенцесушители

Полотенцесушитель для ванной сам является наглядным примером того, как можно улучшить теплоотдачу трубы. «Змеевик» прибора – не что иное, как искусственно увеличенная площадь теплового излучения. Поскольку раньше они были лишь частью общей ветки отопления, изменить диаметр стальной трубы не представлялось возможным. Поэтому площадь теплопередачи увеличивалась путем простого наращивания длины.

Кстати, как раз водяной полотенцесушитель из нержавеющей стали будет неплохо смотреться в черном цвете. Блестящие и хромированные изделия, хоть и выглядят красиво, препятствуют теплообмену между трубой и окружающей средой.

Для вертикально ориентированных систем, таких как радиаторы и полотенцесушители, имеет значение способ подключения входных и выходных труб. Теплоотдача одного прибора при разной установке может значительно измениться:

  • 100% эффективности – диагональное подключение (вход горячей воды сверху, выход с обратной стороны внизу);
  • 97% – одностороннее с верхним входом;
  • 88% – нижнее двухстороннее подключение;
  • 80% – диагональное обратное (с нижним входом);
  • 78% – одностороннее с нижним входом и выходом отработанной воды.

Полиэтилен это самая простая гидроизоляция для теплого пола, так же он увеличивает теплоотдачу

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?

ИмхоДом › Форумы › коммуникации и отопление › Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?

  • В этой теме 4 участника и 9 ответов.

Как посчитать (или где узнать) сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр (одиночная, идущая горизонтально, ничем не загороженная от воздуха)? Например, для условий — воздух вокруг трубы с температурой 20 градусов, теплоноситель (и труба, соответственно, тоже) 70 градусов.

Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)

У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!

д — дополнительные потери теплоты, связанные с остыванием теплоносителя в подающих и обратных магистралях, проходящих в неотапливаемых помещениях, кВт. Величину Q

д рекомендуется определять при коэффициенте эффективности, изоляции 0,75, по табл. 2.

температура теплоносителя на входе в систему отопления (для подающих трубопроводов) или на выходе из нее (для обратных трубопроводов), °С;

— температура воздуха помещений, в которых проложены трубопроводы, °С; определя

… (0,022х пи) х 1м= 0,07 м2 очень мало.

У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!

Читайте также:
Что входит в состав гарцовки для тротуарной плитки

Очень мало для чего? Я же спрашиваю сколько “в граммах”, а Вы “мало”, “внушительно”. Поточнее можете, хотя бы дать примерную цифру? Буду благодарен.

Вот спасибо. Извините за дремучесть в этой области, но требуются (мне) уточнения. Я правильно понял таблицу: если температура теплоносителя 60 градусов, а в комнате 20 градусов, то для трубы 20 мм и эффективности теплоизоляции 75 % в водух уйдет 20 ватт с каждого погонного метра? Поясните, пожалуйста, термин “коэффициент теплоизоляции”. Если он 0.75, то в воздух уходит 25 % тепла, или наоборот — 75? Соответственно, уточняющий вопрос: если теплоизоляции совсем нет, то каждый метр такой трубы отдаст 27 ватт?

Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)

Вот ссылка со всеми выкладками и формулами:

А коэффициен изоляции 0,75, как понимаю это коэффициент учитывающий неэффективность теплосъёма с трубы, связанный с её положением, препятствующим нормальной конвекции, краски на трубе, и т.п. Т.е. при трубе, расположенной в центре помещения, без затруднений конвекции воздуха вокруг неё, без дополнительного покрытия, этот коэф. =1.(табличные значния надо умножить на 1,25).

Рассчитываем отдачу для 1 м. изделия

Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.

  • К = 0.047, коэффициент теплоотдачи;
  • F = 10 м 2 , площадь трубы;
  • dT = 60° С, температурный напор.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Теплый пол

Не так давно теплый пол от полотенцесушителя или комнатного радиатора становился продолжением общей системы отопления в квартире, в разы увеличивая площадь обогревающей поверхности. Но вода в качестве теплоносителя именно в этой ситуации может создать немало проблем.

Как бы ни были надежны стальные трубы, они не вечны, а места соединений, особенно резьбовых, могут со временем дать течь. Только представьте, что это произошло внутри бетонной стяжки, которую так просто не снять. По этой причине теплый пол в водяном исполнении практически не применяется.

Если вы все-таки решили реализовать эту систему, вам придется подумать, как сделать ее максимально эффективной. Мощность теплого пола должна рассчитываться с предельной точностью. Но если цифры показывают, что теплопередача получается недостаточной, нужно в первую очередь озаботиться повышением эффективности стальных труб.

Поскольку эта конструкция контактирует не с воздухом в помещении, а нагревает материалы пола, сыграть можно только на увеличении протяженности труб. Поэтому их и укладывают компактной, но длинной «змейкой». Благодаря большой площади собственной поверхности она передает много тепла.

Нюанс: при плотной укладке нескольких погонных метров трубы теплоотдача теплого пола в целом возрастет, а каждого отдельного сегмента, не критично, но уменьшится.

Причина в том, что слишком близко расположенные трубы частично налаживают теплообмен друг с другом. Вокруг каждой создается нагретая зона, что приводит к некоторому снижению теплового напора.

Какие бывают

Отопительные регистры изготавливают из разного материала, имеют они разную форму. У каждой есть плюсы и минусы.

Из чего делают

Если говорить о материалах, то самый распространенный — сталь, а вернее стальные электросварные трубы. Сталь имеет не самую лучшую теплоотдачу, но это компенсируется невысокой ценой, легкостью в обработке, доступностью и большим выбором типоразмеров.

Совсем редко встречаются сделанные из нержавеющей трубы — для приличной мощности требуется большое количество труб, а сколько стоят изделия из нержавейки, вы имеете представление. Если и делали их, то, наверное, давно. Используют еще «оцинковку», но работать с ней сложнее — варить не получится.

  • требуется нейтральный и чистый теплоноситель, без твердых частиц
  • в системе нежелательно присутствие других металлов и сплавов, кроме совместимых — бронза, латунь, никель, хром, потому все фитинги и арматуру нужно будет искать из этих материалов;
  • обязательно тщательно выполненное заземление — без него при наличии воды начинается процессы электрохимической коррозии;
  • мягкость материала требует защиты — нужны кожухи и т.п.

Есть регистры из чугуна. Но они слишком громоздки. К тому же имеют очень большую массу, под них нужно делать не менее массивные стойки. Плюс ко всему чугун отличатся хрупкостью — один удар, и он может расколоться. Получается, что и этот тип регистров нуждается в защитных кожухах, а они снижают теплоотдачу и увеличивают стоимость. Причем устанавливать их — сложная и тяжелая работа. К плюсам можно отнести высокую надежность и химическую нейтральность: этому сплаву все равно, с каким теплоносителем работать.

В общем, медь и чугун — это непросто. Вот и получается, что оптимальный выбор — стальные регистры.

Еще раз о стальных и металлополимерных трубопроводах

А. С. Жданов, старший преподаватель НовГУ имени Ярослава Мудрого

В настоящее время в системах отопления, холодного и горячего водоснабжения все большее распространение получают трубопроводы из полимерных материалов. Преимущества их очевидны: коррозионная стойкость, малый вес, простота монтажа и т. д. Зачастую реклама делает акцент на малые гидравлические и тепловые потери из-за низких значений коэффициентов эквивалентной шероховатости и теплопроводности полимеров. При этом даются рекомендации по уменьшению диаметров металлополимерных трубопроводов [1], а также по отсутствию необходимости их изоляции по сравнению со стальными. Ошибочность подобных утверждений была показана в статье В. И. Сасина «Применение полимерных труб в системах отопления» [2], в которой приведены результаты тепловых и гидравлических испытаний металлополимерных труб. Однако информация о низких гидравлических сопротивлениях и тепловых потерях пластиковых труб в осторожных формулировках периодически появляется в технических статьях, например в [3, 4].

Как рассчитать теплоотдачу стальной трубы и для чего это делается

Стальные водогазопроводные трубы являются самым популярным металлопрокатом широкого применения. Кроме использования для прокладки коммуникаций в соответствии с названием, они успешно выполняют функции отопительных приборов. Из труб вгп изготавливают гладкие и ребристые регистры разной конфигурации, которые по эффективности теплоотдачи не уступают современным радиаторам. Они прекрасно подходят для транспортировки теплоносителя в системах с естественной циркуляцией, при этом попутно участвуя в обогреве помещений.

Читайте также:
Что собой представляют откатные ворота?

Устанавливая стальные водогазопроводные трубы для отопления, очень важно знать их основные характеристики. В первую очередь к ним относятся вес и коэффициент теплоотдачи. Тщательно выполнив предварительные расчеты, вы убережете себя от неожиданных сложностей при монтаже и обеспечите требуемый эффект при эксплуатации.

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Виды отопительных регистров

Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:

  • Змеевиковые;
  • Секционные.

На рисунке показаны некоторые варианты их конструктивного исполнения.

Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.

Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.

Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.

По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.

Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.

Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Рассчитываем отдачу для 1 м. изделия

Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.

  • К = 0.047, коэффициент теплоотдачи;
  • F = 10 м 2 , площадь трубы;
  • dT = 60° С, температурный напор.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

Полотенцесушители

Полотенцесушитель для ванной сам является наглядным примером того, как можно улучшить теплоотдачу трубы. «Змеевик» прибора – не что иное, как искусственно увеличенная площадь теплового излучения. Поскольку раньше они были лишь частью общей ветки отопления, изменить диаметр стальной трубы не представлялось возможным. Поэтому площадь теплопередачи увеличивалась путем простого наращивания длины.

Кстати, как раз водяной полотенцесушитель из нержавеющей стали будет неплохо смотреться в черном цвете. Блестящие и хромированные изделия, хоть и выглядят красиво, препятствуют теплообмену между трубой и окружающей средой.

Для вертикально ориентированных систем, таких как радиаторы и полотенцесушители, имеет значение способ подключения входных и выходных труб. Теплоотдача одного прибора при разной установке может значительно измениться:

  • 100% эффективности – диагональное подключение (вход горячей воды сверху, выход с обратной стороны внизу);
  • 97% – одностороннее с верхним входом;
  • 88% – нижнее двухстороннее подключение;
  • 80% – диагональное обратное (с нижним входом);
  • 78% – одностороннее с нижним входом и выходом отработанной воды.
Читайте также:
Стиль хайтек в интерьере квартиры: дизайн ремонта для однушки и студии, фото

Полиэтилен это самая простая гидроизоляция для теплого пола, так же он увеличивает теплоотдачу

Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?

ИмхоДом › Форумы › коммуникации и отопление › Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?

  • В этой теме 4 участника и 9 ответов.

Как посчитать (или где узнать) сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр (одиночная, идущая горизонтально, ничем не загороженная от воздуха)? Например, для условий — воздух вокруг трубы с температурой 20 градусов, теплоноситель (и труба, соответственно, тоже) 70 градусов.

Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)

У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!

д — дополнительные потери теплоты, связанные с остыванием теплоносителя в подающих и обратных магистралях, проходящих в неотапливаемых помещениях, кВт. Величину Q

д рекомендуется определять при коэффициенте эффективности, изоляции 0,75, по табл. 2.

температура теплоносителя на входе в систему отопления (для подающих трубопроводов) или на выходе из нее (для обратных трубопроводов), °С;

— температура воздуха помещений, в которых проложены трубопроводы, °С; определя

… (0,022х пи) х 1м= 0,07 м2 очень мало.

У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!

Очень мало для чего? Я же спрашиваю сколько “в граммах”, а Вы “мало”, “внушительно”. Поточнее можете, хотя бы дать примерную цифру? Буду благодарен.

Вот спасибо. Извините за дремучесть в этой области, но требуются (мне) уточнения. Я правильно понял таблицу: если температура теплоносителя 60 градусов, а в комнате 20 градусов, то для трубы 20 мм и эффективности теплоизоляции 75 % в водух уйдет 20 ватт с каждого погонного метра? Поясните, пожалуйста, термин “коэффициент теплоизоляции”. Если он 0.75, то в воздух уходит 25 % тепла, или наоборот — 75? Соответственно, уточняющий вопрос: если теплоизоляции совсем нет, то каждый метр такой трубы отдаст 27 ватт?

Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)

Вот ссылка со всеми выкладками и формулами:

А коэффициен изоляции 0,75, как понимаю это коэффициент учитывающий неэффективность теплосъёма с трубы, связанный с её положением, препятствующим нормальной конвекции, краски на трубе, и т.п. Т.е. при трубе, расположенной в центре помещения, без затруднений конвекции воздуха вокруг неё, без дополнительного покрытия, этот коэф. =1.(табличные значния надо умножить на 1,25).

Теплый пол

Не так давно теплый пол от полотенцесушителя или комнатного радиатора становился продолжением общей системы отопления в квартире, в разы увеличивая площадь обогревающей поверхности. Но вода в качестве теплоносителя именно в этой ситуации может создать немало проблем.

Как бы ни были надежны стальные трубы, они не вечны, а места соединений, особенно резьбовых, могут со временем дать течь. Только представьте, что это произошло внутри бетонной стяжки, которую так просто не снять. По этой причине теплый пол в водяном исполнении практически не применяется.

Если вы все-таки решили реализовать эту систему, вам придется подумать, как сделать ее максимально эффективной. Мощность теплого пола должна рассчитываться с предельной точностью. Но если цифры показывают, что теплопередача получается недостаточной, нужно в первую очередь озаботиться повышением эффективности стальных труб.

Поскольку эта конструкция контактирует не с воздухом в помещении, а нагревает материалы пола, сыграть можно только на увеличении протяженности труб. Поэтому их и укладывают компактной, но длинной «змейкой». Благодаря большой площади собственной поверхности она передает много тепла.

Нюанс: при плотной укладке нескольких погонных метров трубы теплоотдача теплого пола в целом возрастет, а каждого отдельного сегмента, не критично, но уменьшится.

Причина в том, что слишком близко расположенные трубы частично налаживают теплообмен друг с другом. Вокруг каждой создается нагретая зона, что приводит к некоторому снижению теплового напора.

Коэффициенты

Таблица теплоотдачи стальных труб

Тип соединения Для труб с внутренним диаметром, мм Δt, °С
50 — 60 60 — 70 70 — 80 80 — 100
В одну нитку до 40 11,5 12 12,5 12,5
50-100 10 10,5 11 11,5
свыше 125 10 10,5 10,5 10,5
В несколько ниток до 40 10 11 11,5 11,5
свыше 50 8 9 9 9

Приведенные цифры даны для труб с толщиной стенок от 3 мм и выше.

Полотенцесушитель в ванную из нержавейки, хоть и относится к рассмотренным гладким трубам, придется рассчитывать через другой коэффициент из-за разницы между черной и нержавеющей сталью. При тепловом напоре Δt = 70-80 °С для труб разного диаметра принимают такие значения:

Ду, мм 15 20 25 30 35 40 45 50
k 15 14,5 13,3 12 11 10 9 8

Следует учитывать, что сушка для полотенец в ванную, если это не старая часть отопительной системы, как правило, изготавливается из двух типоразмеров труб. Поэтому для змеевика и соединительных перемычек меньшего диаметра коэффициент k выбирается отдельно.

Какую систему вам бы ни пришлось обсчитывать, напольный водяной полотенцесушитель или регистры отопительного прибора, вам понадобится еще один коэффициент. Он позволит привести полученный результат в единицах Ккал/ч к привычному виду Вт/ч. Для этого Q умножают на 1,163.

СНиП 2.04.01-85 требует, чтобы стальной полотенцесушитель имел теплоотдачу не меньше 100 Вт на единицу площади помещения (1 м2) и минимум 40 Вт на 1 м3 ванной. Поэтому после перевода теплоотдачи в соответствующие единицы измерения, можно определить, для комнат каких размеров подходит выбранная конструкция сушки.

Еще раз о стальных и металлополимерных трубопроводах

А. С. Жданов, старший преподаватель НовГУ имени Ярослава Мудрого

В настоящее время в системах отопления, холодного и горячего водоснабжения все большее распространение получают трубопроводы из полимерных материалов. Преимущества их очевидны: коррозионная стойкость, малый вес, простота монтажа и т. д. Зачастую реклама делает акцент на малые гидравлические и тепловые потери из-за низких значений коэффициентов эквивалентной шероховатости и теплопроводности полимеров. При этом даются рекомендации по уменьшению диаметров металлополимерных трубопроводов [1], а также по отсутствию необходимости их изоляции по сравнению со стальными. Ошибочность подобных утверждений была показана в статье В. И. Сасина «Применение полимерных труб в системах отопления» [2], в которой приведены результаты тепловых и гидравлических испытаний металлополимерных труб. Однако информация о низких гидравлических сопротивлениях и тепловых потерях пластиковых труб в осторожных формулировках периодически появляется в технических статьях, например в [3, 4].

Как рассчитать теплоотдачу стальной трубы и для чего это делается

С какой целью рассчитывают теплоотдачу стальных труб

Преимущественно, расчет теплоотдачи стальных труб производится в таких случаях:

  • если нужно определить мощность нагревательных приборов для системы отопления в доме;
  • если возникла необходимость оценки теплопотерь, происходящих во время транспортировки теплоносителя по трубопроводу.
Читайте также:
Шпунтованная доска для пола на балконе

Стоит отметить, что нагревательные контуры, сквозь которые может отдаваться тепло, устанавливают в таких приборах:

  • полотенцесушители и змеевики;
  • регистры;
  • системы теплого пола.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Системы теплых полов

Если речь идет о водяном теплом полу, в отличие от электрического аналога, в качестве нагревательного контура в нем используются металлические трубы, хотя, их стали применять в последнее время все реже.

Главная причина снижения спроса на водяной теплый пол заключается в постепенном изнашивании стальных труб, снижении просвета в них. Кроме того, имеет значение и способ монтажа – сварные швы выполнить сможет далеко не каждый, а резьбовое соединение грозит утечкой теплоносителя через некоторое время. Естественно, никому не понравится результат утечки воды из системы в полу со стяжкой – будет затоплен потолок нижнего этажа или подвала, а перекрытие постепенно придет в негодность.

По этим причинам на замену стальным трубам в теплых водяных полах сначала пришли металлопластиковые змеевики, фитинги на которые крепились за пределами стяжки, а в настоящее время предпочитают армированный полипропилен.

Такому материалу присуще незначительное тепловое расширение, а при грамотной укладке и эксплуатации они могут прослужить не один десяток лет. Как вариант, используют и другие полимерные материалы.

Обратите внимание, что зазоры для теплового расширения армированного полипропилена все же нужно оставлять, хоть оно и небольшое.

Как выполнить расчёт необходимого диаметра труб отопления

Начиная расчет диаметра трубы для отопления жилого помещения, следует учесть ещё один важный параметр. Это – тепловая нагрузка. В соответствии со стандартами, комфортные условия для проживания в помещении при высоте потолка в 2,5 м обеспечивают 0,1 кВт тепловой мощности, приходящихся на 1 м2 его площади. Следовательно, можно очень легко подсчитать, сколько же потребуется тепла для обогрева, например, комнаты в 20 м2:

В соответствии с таблицей подбирается диаметр труб, способных обеспечить комфортное тепло. В нашем примере, согласно представленной таблице, для того, чтобы в комнате всегда было тепло, вполне подойдут трубы внутренним диаметром в 1/2 дюйма.

Тепловая нагрузка и расход теплоносителя для труб отопления различного диаметра

Полотенцесушители

В домах старой постройки полотенцесушители из стальных труб встречаются очень часто, ведь в большинстве случаев они были заложены проектом, причем почти до конца прошлого века врезались в систему на резьбе.

Не так давно стали применять циркулярные врезки в элеваторных узлах, которые обеспечивают стабильную горячую температуру прибора.

Поскольку нагревательные контуры в полотенцесушителях постоянно подвергались перепадам температур – то нагревались, то остывали – резьбовым соединениям было сложно выдержать такой режим, поэтому они периодически начинали подтекать.

Несколько позднее, когда прогрев этих приспособлений стал стабильным благодаря врезке в стояки отопления, проблема протечек стала не настолько актуальной. В то же время размеры змеевика стали намного меньше, в результате чего снизилась площадь теплоотдачи стальной трубы. Однако такой полотенцесушитель оставался теплым не только во время использования горячей воды, а постоянно.

Методы повышения теплоотдачи

Круглая форма отнюдь не способствует увеличению теплоотдачи металлических труб. Еще более низкий коэффициент отношения объема и поверхности можно встретить только у сферы.

Следовательно, проблема как увеличить теплоотдачу трубы, несомненно, стояла у разработчиков первых простых отопительных приборов.

Чтобы увеличить коэффициент теплоотдачи стальной трубы раньше применялись такие методы:

  • Поверхность трубы покрывали матовой черной краской, чтобы усилить инфракрасное излучение нагревательного элемента. Это позволяло добиться значительного роста температуры в помещении. Стоит отметить, что современное хромирование на полотенцесушителях крайне неэффективно для усиления теплоотдачи – оно, скорее, для красоты.
  • Увеличение теплоотдачи трубы за счет наваривания на нее дополнительных ребер, что делало площадь нагревательного элемента, а значит и теплоотдачу, существенно больше. Наиболее передовым вариантом использования данного способа можно назвать конвектор, то есть участок загнутой трубы с приваренными поперечными ребрами. Хотя сама труба в данном случае отдает минимум тепла.

Любым из этих методов можно воспользоваться, если стоит вопрос, как увеличить теплоотдачу трубы отопления своими руками, ведь они совсем не сложные и вполне осуществимы в домашних условиях.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теплопотери сквозь трубы

В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.

А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.

Какие бывают

Отопительные регистры изготавливают из разного материала, имеют они разную форму. У каждой есть плюсы и минусы.

Из чего делают

Если говорить о материалах, то самый распространенный — сталь, а вернее стальные электросварные трубы. Сталь имеет не самую лучшую теплоотдачу, но это компенсируется невысокой ценой, легкостью в обработке, доступностью и большим выбором типоразмеров.

Читайте также:
Устройство армопояса под плиты перекрытия

Совсем редко встречаются сделанные из нержавеющей трубы — для приличной мощности требуется большое количество труб, а сколько стоят изделия из нержавейки, вы имеете представление. Если и делали их, то, наверное, давно. Используют еще «оцинковку», но работать с ней сложнее — варить не получится.

  • требуется нейтральный и чистый теплоноситель, без твердых частиц
  • в системе нежелательно присутствие других металлов и сплавов, кроме совместимых — бронза, латунь, никель, хром, потому все фитинги и арматуру нужно будет искать из этих материалов;
  • обязательно тщательно выполненное заземление — без него при наличии воды начинается процессы электрохимической коррозии;
  • мягкость материала требует защиты — нужны кожухи и т.п.

Есть регистры из чугуна. Но они слишком громоздки. К тому же имеют очень большую массу, под них нужно делать не менее массивные стойки. Плюс ко всему чугун отличатся хрупкостью — один удар, и он может расколоться. Получается, что и этот тип регистров нуждается в защитных кожухах, а они снижают теплоотдачу и увеличивают стоимость. Причем устанавливать их — сложная и тяжелая работа. К плюсам можно отнести высокую надежность и химическую нейтральность: этому сплаву все равно, с каким теплоносителем работать.

В общем, медь и чугун — это непросто. Вот и получается, что оптимальный выбор — стальные регистры.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Способы увеличения теплоотдачи

Во всех отопительных и нагревательных системах нужно стремиться к тому, чтобы теплоотдача трубы была максимальной. Это будет означать, что энергию, затрачиваемую на нагрев носителя, мы используем наиболее эффективно. Для каждой конструкции, работающей в своих условиях, способ увеличить теплопередачу подбирается отдельно, с учетом всех нюансов. Но основой этих улучшений будут уже рассмотренные в теоретическом расчете исходные данные – площадь излучающей поверхности и разница температур.

Теплоотдача стальных труб — значимый параметр в расчете отопления

1.а) стенка стальная, чистая, толщиной =14 мм, теплопроводность стали = 50 Вт/(м*К).

Находим коэффициент теплопередачи стальной стенки k

Термическое сопротивление стали

Плотность теплового потока в стальной стенке:

Величина теплового потока Q

численно равна плотности теплового потока
q
, т.к. площадь поверхности
F
=1 и время =1.

Эквивалентный коэффициент теплопроводности в данном случае равен теплопроводности стали = 50 Вт/(м*К), т.к. стенка однослойная.

1. б) стенка медная, чистая, толщиной =14 мм, теплопроводность меди = 350 Вт/(м*К);

1.в) стенка стальная, со стороны воды покрыта слоем накипи = 9 мм, теплопроводность накипи = 2 Вт/(м*К);

1. г) стенка стальная, со стороны воды покрыта слоем накипи = 9 мм, теплопроводность накипи = 2 Вт/(м*К), поверх накипи имеется слой масла толщиной , теплопроводность масла = 0,1 Вт/(м*К);

1.д) то же, что и в случае г), но со стороны газов стенка покрыта слоем сажи толщиной 0,2 Вт/(м*К).

Коэффициент теплопередачи в такой многослойной стенке

2. Примем плотность потока тепла для случая а) за 100%, подсчитаем плотности потоков тепла для остальных случаев:

3. Определим расчетным путем температуры всех поверхностей слоев стенки для случая д), для этого используем следующее уравнение:

а) температура на поверхности стенки со стороны газов

б) температура на границе между слоем сажи и сталью

в) температура на границе между стальной стенкой и слоем накипи

г) температура на границе между слоем накипи и слоем масла

д) температура на поверхности стенки со стороны воды

4. Проверим расчетные температуры графически.

5. Построим для случая д) линию падения температуры в стенке.

Конвективный теплообмен и теплопередача через многослойную цилиндрическую стенку.

По горизонтальному стальному трубопроводу (рис.1), с внутренним и наружным диаметром соответственно D1

= 25мм и
D2
= 32мм движется вода со средней скоростью
wж1
= 0,03м/с. Средняя температура воды
tж1
= 140 Трубопровод изолирован асбестом и охлаждается посредством естественной конвекции сухим воздухом с температурой
tж2
= 22 Определить наружный диаметр изоляции, при котором на внешней поверхности изоляции устанавливается температура
tст3
= 44 . Определить линейный коэффициент теплопередачи от воды к воздуху
k1
(Вт/м 2 К), потери теплоты с одного погонного метра трубопровода
ql
(Вт/м), а также температуру наружной поверхности стального трубопровода
tст2
.

Рассчитать, целесообразно или нет применять в качестве теплоизоляционного материала асбест? Приводит ли асбестовая изоляция к уменьшению теплового потока с поверхности трубопровода?

Применять следующие упрощающие предположения:

– течение воды в трубопроводе термически стабилизированное;

– между наружной поверхностью стального трубопровода и внутренней поверхностью изоляции существует идеальный тепловой контакт;

– считать, что теплопроводность стали 1=50 Вт/м*К и асбеста 2= 0,12 Вт/м*К не зависит от температуры.

Наружный диаметр изоляции должен быть рассчитан с такой точностью, чтобы температура на наружной поверхности изоляции отличалась от заданной не более чем на 0,1

1. Определим режим течения жидкости

2. Найдем коэффициент теплоотдачи α1, для этого сначала рассчитаем число Нуссельта

Т.к. температура стенки неизвестна, то в первом приближении задаемся значением

, при этой температуре ст1=2,184

Первое приближение; теплообмен между наружной поверхностью изоляции и воздухом – это свободная конвекция. Для этого случая критериальное уравнение такое:

температурой воздуха и температурой поверхности изоляции:

б) труба расположена горизонтально и при свободной конвекции обтекается воздухом поперечно. При таком обтекании характерный размер – наружный диаметр изоляции, который пока неизвестен, поэтому в первом приближении будем считать .

4. Найдем наружный диаметр изоляции D3.

5. Определим линейный коэффициент теплопередачи от воды к воздуху:

6. Определим потери теплоты с одного погонного метра трубопровода:

7. Определим температуру наружной поверхности стального трубопровода:

8. Рассчитаем эффективность асбестовой изоляции. Для этого найдем потери теплоты с неизолированного стального трубопровода:

и сравним его с найденной ранее величиной потерь с изолированного трубопровода. Очевидно, что изоляция асбестом в данном случае весьма эффективна.

Список рекомендуемой литературы

1. Транспортная энергетика: Учебник /Котиков Ю.Г., Ложкин В.Н. М.: Академия. – 2006 – 272 с.

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Читайте также:
Трубы НПВХ обсадные: свойства, характеристики и монтаж

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Виды отопительных регистров

Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:

  • Змеевиковые;
  • Секционные.

На рисунке показаны некоторые варианты их конструктивного исполнения.

Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.

Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.

Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.

По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.

Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.

Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Диаметры труб отопления и особенности их выбора

Приступая к решению такой задачи, как расчет диаметра труб системы отопления, следует принять во внимание, что существует несколько понятий, объединённых общим термином «диаметр трубы». Каждые трубы могут характеризоваться следующими параметрами:

  • Внутренний диаметр – основная характеристика трубы, указывающая на её пропускную способность.
  • Наружный диаметр – не менее важная характеристика, которую обязательно следует принимать во внимание при проектировании отопительной системы.
  • Номинальный диаметр (условный проход) – некая округлённая величина, которая указывается при маркировке.

Не следует забывать также, что трубы, изготовленные из разных материалов, имеют в своей маркировке число, соответствующее тому или иному её диаметру:

  • Стальные и чугунные трубы маркируют по величине их внутреннего диаметра.
  • Трубы из меди или пластика – по величине наружного диаметра.

Именно поэтому, проводя расчет сечения трубы отопления, в обязательном порядке надо учитывать материал труб. Особенно, если предполагается создать систему, представляющую собой комбинацию разных труб.

Одной из особенностей, влияющих на выбор размера любых труб, является единица измерения, принятая для оценки величины их диаметра, а следовательно, и их маркировки. Основной единицей, указывающей на размер трубы, является целое число или доля дюйма. Чтобы перевести дюймы в привычную для нас систему измерения, следует запомнить, что 1 дюйм = 25,4 мм.

Использование более эффективной модели

В некоторых ситуациях улучшить эффективность работы батарей можно исключительно радикальным методом, заменив их на новые. Отметим, что даже высококачественные системы отопления после двух десятков лет эксплуатации нуждаются в обновлении из-за того, что происходит выработка их ресурса. Технологии не стоят на месте, а это значит, что в радиаторах старого образца используются менее эффективные и энергоемкие материалы.

Еще один важный аргумент в пользу замены старых батарей на новые — это улучшенная конструкция последних. В современных моделях площадь теплоотдачи значительно больше, кроме того, производители разработали инновационные детали радиаторов, позволяющие увеличить их производительность. Речь идет о конвекционных окошках в верхней части прибора и вертикальных ребрах.

Читайте также:
Фактурная краска для внутренних работ, отзывы, фото

Подводя итог, отметим, что советы опытных мастеров, приведенные в этом материале, помогут повысить температуру в квартире на 2–4 градуса. Если же справиться с проблемой отопления своими руками не получится, тогда придется прибегнуть к услугам профессионалов. О том, как провести расчет мощности системы отопления и организовать ее монтаж, мы расскажем в одной из следующих статей. Следите за обновлениями сайта и до новых встреч!

Различия между теплообменниками газовых котлов

В электрических котлах главным нагревательным элементом является тэн. В газовых — теплообменник. Он служит для того, чтобы нагревать воду, которая через него проходит. Для этого используется горелка с открытым пламенем. Так как условия достаточно агрессивные, следует внимательно подходить к выбору теплообменника. Раньше они представляли собой обычную металлическую трубку, но сейчас их устройство намного сложнее.

Читайте в статье

Материал теплообменника газового котла: какой лучше

Меня удивляет, когда люди не задумываются о материале, из которого сделан теплообменник в котле. Ведь это один из самых важных элементов отопительного оборудования. Именно от материала зависит КПД, скорость нагрева и главное – срок службы. Помимо этого, они могут содержать второй контур. Чтобы вы поняли, какой теплообменник лучше, я хочу рассказать про преимущества и недостатки каждого из них.

Первые чугунные теплообменники

Именно чугун использовали при создании первых угольных и газовых котлов. Это объясняется его антикоррозийными свойствами и сроком службы от 30 до 50 лет. Да и вообще, чугун слабо воздействует с какими-либо химическими веществами. А вот что касается теплоёмкости, она одна из самых высоких. Поэтому даже сейчас, когда появилось много других видов, теплообменники из чугуна продолжают пользоваться спросом. Они дольше нагреваются, но и гораздо дольше удерживают тепло после прекращения нагрева.

К сожалению, недостатков у них больше. Во-первых, это огромный вес и габариты. Котлы с чугунными теплообменниками занимают много места, а повесить их на стену вообще не представляется возможным. Только напольный способ установки, массивные мощные котлы требовательны к напольному покрытию (их масса часто превышает 300-400 кг).

Во-вторых, они плохо переносят резкие перепады температур. А ведь в отоплении обратка всегда холоднее подачи. В-третьих, чтобы уберечь чугун от этих перепадов, начали применять особые горелки. И тогда теплоёмкость уже перестала быть преимуществом. Поэтому, по сути, единственным преимуществом является большой срок службы.

Стальной

Чтобы избавиться от минусов чугунных, начали использовать стальные теплообменники. Они легче, оборудование занимает меньше места, да и цена гораздо ниже. Помимо этого, стальные теплообменники не так сильно боятся перепадов температур, поэтому в качестве нагревательного элемента подходят очень хорошо. А в случае поломки их можно отремонтировать. Конечно, не все модели, но многие.

Почему же тогда чугунные теплообменники продолжают использовать, если у стальных так много преимуществ? Дело в том, что не всё так гладко. Ведь сталь подвержена коррозии, а это уже огромный минус. Поэтому и срок службы в 2-3 раза меньше, обычно от 12 до 15 лет. Ещё я хотел бы обратить внимание на то, что сталь может прогореть. Если уж вы решили выбирать котёл с теплообменником из этого материала, я советую заранее узнать про толщину стенок. Она должна быть 3 мм и больше. А лучше 5 мм.

Медный

Самый лучший металл по теплоотдающим характеристикам — это медь. Пожалуй, можно назвать только один недостаток медных теплообменников. Это их высокая цена, устанавливаются медные теплообменники обычно на модели среднего ценового сегмента и выше (от 45-50 тыс. руб). Зато преимуществ очень много:

  • компактные размеры;
  • малый вес;
  • высокий КПД;
  • медь практически не поддаётся коррозии;
  • быстро нагревается и остывает;

Кстати, именно из-за быстрого нагрева тратится гораздо меньше газа, поэтому ещё одним плюсом можно считать экономию. Что касается срока службы, производители обычно указывают 14—17 лет, что соответствует реалиям. Это незначительно больше, чем у стали, но все еще сильно меньше, чем у чугуна. Но за такое время на топливе получится сэкономить гораздо больше.

Обычно медные теплообменники устанавливают в настенных котлах. Хотя встречаются и в напольных.

Алюминиевый

В качестве материала для теплообменника газового котла используют и алюминий. Впервые его применили в конденсационных моделях, но о них я расскажу чуть позже. Алюминиевые теплообменники устанавливают и в обычных конвекционных котлах. Казалось бы, зачем они нужны, если медь хорошо справляется со своими задачами? Всё дело в цене. Чтобы удешевить производство, в медных теплообменниках стараются уменьшать толщину стенок. С алюминием этого делать не нужно. Он и так в несколько раз дешевле меди, а теплоотдающие свойства тоже достаточно высокие.

Получается, что алюминиевый теплообменник толще медного. И в этом его огромное преимущество, ведь повышается срок службы. Практика показала, что алюминий ещё и меньше подвержен окислению. Но в интернете мнения на этот счёт расходятся. Поэтому сложно сказать точно, какой теплообменник лучше.

Мы рекомендуем: настенные модели – с медным или алюминиевым теплообменником; напольные – с чугунным. Разумеется, в бюджетных моделях применяют исключительно сталь.

Конденсационные котлы с дополнительным теплообменником

В обычных котлах горелка нагревает теплообменник, а продукты сгорания удаляются через дымоход. Но смысл в том, что часть тепла тоже уходит через дымоход. Чтобы использовать это тепло для обогрева, создали конденсационные котлы. Их конструкция предполагает наличие дополнительного теплообменника. Устроен он достаточно сложно. Из-за разницы температур образуется конденсат, который и служит источником тепловой энергии. Грубо говоря, пар становится водой, она остужается, а её тепло используется для отопления.

Идея создания конденсационных котлов не такая уж новая. Об этом задумывались несколько десятков лет назад. Но тогда технологии не позволяли сделать сплав металла, который мог бы долго проработать в агрессивной среде. Сейчас для этих целей обычно используют высококачественную нержавейку.

Сравнение конвекционных и конденсационных газовых котлов
Окупаемость конденсационных моделей в отечественных условиях

Монотермический или битермический

Когда котёл способен работать только в режиме отопления, его называют одноконтурным. Но многие современные модели способны также работать в режиме горячего водоснабжения (ГВС). Такие котлы называют двухконтурными. Осуществить нагрев воды можно двумя способами: с помощью пластинчатого теплообменника или битермического.

Пластинчатый теплообменник установлен отдельно от основного и состоит из двух частей. Когда через одну часть проходит вода из отопления, она нагревает вторую, которая соединена с водопроводом. Это раздельный, более практичный и надежный, но более дорогой и менее компактный способ.

Битермический теплообменник невозможно очистить механическим путем и довольно сложно промыть. При образовании накипи он быстрее забивается.

В целях экономии средств и пространства придумали сдвоенные или битермические теплообменники. Принцип действия у них совершенно другой. Конструктивно это одна деталь: теплообменник в теплообменнике или труба в трубе. Снаружи обычно проходит отопление, а внутри располагается контур ГВС.

Читайте также:
Устанавливаем коробку под розетку или выключатель самостоятельно

К сожалению, из-за своей конструкции у битермических теплообменников узкие проходы, которые могут быстро засориться. А чистка помогает далеко не всегда, да и сделать это не так просто. Цена у таких теплообменников гораздо выше. Да и всё равно пользоваться водой придётся ограниченное время, так как присутствует риск прогорания металла. Я считаю, что лучше покупать котлы с раздельными теплообменниками. Они более надёжные.

Теплообменник газового котла в разрезе. Использование загрязненного теплоносителя и отсутствие регулярной чистки привело к тяжелым последствиям: серьезный перегрев и практически полное засорение.

Как выбрать умягчитель воды для газового котла и продлить срок службы теплообменника

Люди покупают котёл не на один год. В худшем случае он должен прослужить несколько лет. А так как теплообменник является важной частью любого котла, то и к его выбору нужно подходить основательно. Также стоит помнить, что это одна из самых дорогих и труднозаменимых запчастей. Лучше следить за правильной работой оборудования и ежегодно его обслуживать, чем потом платить лишние деньги за ремонт.

Теплообменники для котла

Уточнить поиск

  • Битермический теплообменник
  • Первичный теплообменник
  • Теплообменник вторичный (пластинчатый)
  • Теплообменники для напольных котлов
  • Конденсационные теплообменники
  • Прочие теплообменники
  • Соединительные трубки
  • Фиксаторы и уплотнительные прокладки

Сальник, уплотнительное кольцо Vaillant 981163

Сальник, уплотнительное кольцо Vaillant 981163 Уплотнительное кольцо вторичного теплообменни..

Фиксатор теплообменника артикул 39840260

Фиксатор теплообменника котлов торговых марок Immergas, Hermann, Ariston, Chaffoteaux & Maury, Elexi..

106 руб. 118 руб.

Кольцевое уплотнение 17.86×2.62 ARISTON 61308091

Кольцевое уплотнение 17.86×2.62 ARISTON 61308091ОПИСАНИЕ:Кольцо уплотнительное 17,86×2,62 для котлов..

134 руб. 149 руб.

Клипса теплообменника для котла Arderia 3010923

Клипса теплообменника для котла Arderia 3010923Для настенных газовых двухконтурных котлов Arderia:Ar..

149 руб. 165 руб.

Скоба-фиксатор циркуляционного насоса Navien 20007877

Зажим для насоса Navien, скобка для циркуляционного насоса – фиксатор гидравлической части Navi..

176 руб. 196 руб.

Кольцо упорное металлическое для теплообменника Navien 20018744

Металлическое упорное кольцо теплообменника для котлов Navien: Deluxe 13-40K,Deluxe Coaxial 13-..

186 руб. 207 руб.

Кольцо упорное металлическое для теплообменника Navien 20021730B

Металлическое упорное кольцо теплообменника для котлов Navien: Deluxe,Deluxe Coaxial,Deluxe Plu..

186 руб. 207 руб.

Клипса крепежная теплообменника для котлов Baxi 5113650

Клипса крепежная теплообменника для котлов Baxi 5113650Клипса (фиксатор) теплообменника ст..

188 руб. 209 руб.

Кольцо уплотнительное вторичного теплообменника D=18,6мм для котлов Arderia 3080144

Кольцо уплотнительное вторичного теплообменника D=18,6мм для котлов Arderia 3080144Устройство или сп..

198 руб. 220 руб.

Скоба (зажим) для трубки теплообменника Protherm Leopard, Tiger, Panther (1 шт.) – 0020033344

Зажим (скоба) для трубки теплообменника (1 шт.) Protherm Пантера, Тигр, Скат 0020033344 (аналог S544..

208 руб. 231 руб.

Прокладка теплообменника ГВС (1шт) для котлов Bosch, Buderus 87167713250

Прокладка теплообменника ГВС (1 шт) (87167713250) предназначена для уплотнения соединений теплообмен..

225 руб. 250 руб.

Прокладка теплообменника ГВС 18мм (1 шт) для котлов Bosch, Buderus 87167710030

Прокладка теплообменника ГВС (1 шт) (87167710030) предназначена для уплотнения соединений теплообмен..

225 руб. 250 руб.

Прокладка вторичного теплообменника для котлов Protherm 05451700

Прокладка вторичного теплообменника для котлов Protherm 05451700ОПИСАНИЕ:Кольцо уплотнительное подхо..

248 руб. 275 руб.

Уплотнение (прокладка) пластинчатого теплообменника (1 шт.) Fondital, 6ORSCAPI01

Уплотнение (прокладка) пластинчатого теплообменника (1 шт.) Fondital, 6ORSCAPI01Производитель – Fond..

335 руб. 372 руб.

Комплект прокладок вторичного теплообменника (4шт) на газовый котел Saunier Duval s5466000

Комплект прокладок вторичного теплообменника (4шт) на газовый котел Saunier Duval s5466000Основ..

396 руб. 440 руб.

Уплотнительные прокладки теплообменника Biasi M97, M90 (2 штуки) KI1043114

Уплотнительные кольца теплообменника Биази Внутри трубок теплообменника расположены уплотнительные п..

419 руб. 466 руб.

Комплект уплотнений пластинчатого теплообменника Viessmann 7856847

Комплект уплотнений пластинчатого теплообменника Viessmann 7856847 Для настенных газовых котлов V..

495 руб. 550 руб.

Прокладки 10 шт.(18х3,5) вторичного теплообменника Protherm – 0020033467

Прокладки 10 шт.(18х3,5) вторичного теплообменника Protherm – 0020033467 Устанавливается на газов..

502 руб. 558 руб.

Прокладка теплообменника вторичного Westen, Baxi, артикул 5404520 Компл. 4 шт.

Прокладка вторичного теплообменника настенного котла Baxi комплект 4 шт: – ECOFOUR – FOURTECH – ECO3..

530 руб. 589 руб.

Комплект уплотнительных колец теплообменника ГВС (пластинчатого)- 65104334

Комплект колец теплообменника ГВС (пластинчатого) Автор статьи: Кравец Анна..

594 руб. 660 руб.

Комплект уплотнительных колец – 4 шт. вторичного теплообменника ГВС Protherm 0020014182

Комплект уплотнительных колец – 4 шт. вторичного теплообменника ГВС Protherm 0020014182Наружный..

628 руб. 698 руб.

Сальники (прокладки) теплообменника ГВС SIME FORMAT.ZIP BF (6281535А) – комплект 4 шт.

Комплект сальников (прокладок) теплообменника ГВС SIME FORMAT. ZIP BF Автор статьи: Кравец Анна..

629 руб. 699 руб.

Уплотнения вторичного теплообменника котлов Protherm Пантера, Гепард, Vaillant серии Tec (4 шт.) 178969

Прокладки теплообменника гвс на четыре крепежных уха котлов Protherm, VaillantVaillantProthermAtmoTe..

636 руб. 706 руб.

Прокладки теплообменника Vaillant на гвс Turbomax, Atmomax Pro | Plus (11981163)

При замене вторичного теплообменника котла Vaillant рекомендуем выполнить замену уплотнительных..

685 руб. 761 руб.

Комплект для замены теплообменника Biasi Rinnova, Inovia BI1172101

Прокладки и фиксаторы теплообменника Biasi Rinnova, Inovia BI1172101. Прокладки и фиксаторы для перв..

697 руб. 775 руб.

Скоба теплообменника Biasi M97, M90 (1 штука) BI1182106

Фиксатор теплообменника используется в котлах Biasi для плотного соединения теплообменника с патрубк..

698 руб. 776 руб.

Сальники (прокладка) вторичного теплообменника артикул 62917999

Сальники (прокладка) вторичного теплообменника артикул 62917999 – уплотнительные прокладки вторичног..

769 руб. 854 руб.

Ниппель (соединение чугунных секций теплообменника) Protherm Медведь PLO 0020027559

Ниппель (соединение чугунных секций теплообменника) Protherm Медведь PLO 0020027559 Подходит к мо..

891 руб. 990 руб.

Ниппель конический с диафрагмой D13 теплообменника Ferroli 39816730

Ниппель конический (39816730) изготовлен из современных и надежных материалов и предназначен для уст..

923 руб. 1 025 руб.

Ниппель De Dietrich 83770547

Ниппель De Dietrich 83770547Для котлов:DTG 220 ECONOX/II,DTG 220 ECONOX,DTG 210 NEZ.Производитель:&n..

961 руб. 1 068 руб.

Ниппель стальной окрашенный D55,22мм De Dietrich 83360507

Ниппель стальной окрашенный D55,22мм De Dietrich 83360507Устанавливается на:GT 220 – 2200,GT / GTM 2..

961 руб. 1 068 руб.

Прокладка De Dietrich 300009841

Прокладка De Dietrich 300009841Монтируют в:WHE 2.24,WHE 2.24 FF-3S,WHE 2.24 FF,WHE 2.28 FF.Производи..

971 руб. 1 079 руб.

Уплотнение теплообменника вторичного, пластинчатого, ГВС Ariston UNO 573825

Уплотнение теплообменника вторичного, пластинчатого, ГВС Ariston UNO 573825 Уплотнение теплообмен..

1 027 руб. 1 141 руб.

Уплотнения теплообменника ГВС Beretta CITY, EXCLUSIVE MIX (4 шт.) r10025067

Прокладки теплообменника ГВС для котла Beretta CITY, EXCLUSIVE MIX (4 шт.)R10025067 Описание: ..

1 038 руб. 1 154 руб.

Комплект уплотнений пластинчатого теплообменника Viessmann Vitopend 100 WH1B, Vitopend 222-W WHSA 7824700

Резинки теплообменника на горячую воду Висман Витопенд Резиновые прокладки используются для монтажа ..

Читайте также:
Строительство дома из ракушняка: характеристики и преимущества

1 154 руб. 1 282 руб.

Прокладка теплообменника ГВС (20шт/комп) Ferroli (39837700, 35103070)

Используется в следующих моделях: Domina C N DOMINA C 13 N White DOMINA C 16 N Wh..

1 257 руб. 1 397 руб.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • >
  • >|

Газовый теплообменник

Теплообменники газовых настенных котлов можно разделить на категории, в зависимости по принципу работы.

Котлы бывают: битермические с сдвоенным теплообменником и с раздельными теплообменниками (первичный на отопление), вторичный (для нагрева горячей воды).

Не в зависимости от модели котла и торговой марки, конструкция и размеры всех теплообменником прямопропорциональна тепловой мощности котла: с увеличением мощности длина рабочей части теплообменников битермических и монотермических увеличивается, что касается теплообменников пластинчатых увеличивается количество пластин, соответственно их толщина, более подробней расписано в описании каждой категории теплообменников для газовых котлов.

Битермические теплообменники сдвоенные теплообменники, особенность, которых заключается в двойном объеме передачи тепла, к воде и теплоносителю, и от газа к теплоносителю.

Первичный теплообменник котла газ передает энергию теплоносителю.

Вторичный теплообменник передача энергии осуществляется сантехнической водой теплоносителю.

Подсоединение теплообменника котла может быть резьбовое, под фиксирующую скобу и разнообразное, что свойственно, в основном для торговых марок Vaillant, Demrad, Viessmann, Ferroli.

Какой теплообменник лучше битермический или раздельный?

Частой проблемой выбора газового котла, стоит вопрос: купить газовый котел с одним битермическим теплообменником или с двумя независимыми первичным и вторичным на горячую воду?

Битермические котлы с одним теплообменником и магнитным реле протока устанавливается в помещениях со средней жесткостью воды и протоком до 2 литров в минуту.

Котел с двумя теплообменниками и механическим переключением трехходового клапана устанавливается в помещениях с протоком воды не менее 3 минут.

Котел с двумя теплообменниками и электрическим переключением трехходового клапана с участием в процессе нагрева воды датчика протока устанавливается на объектах с протоком сантехнической воды до двух литров в минуту.

Каким образом можно повлиять на продление срока службы теплообменника?

Второй фактор для продления службы эксплуатации теплообменников это своевременная промывка теплообменника и проведение технического обслуживания котла, при котором специалист сможет определить степень загрязненности теплообменника и осуществить ремонт и чистку теплообменника вовремя с помощью промывки теплообменника без дополнительных затрат на приобретение нового.

В современных технологиях при комплектации котлов могут быть использованы теплообменники с материалов: медь, сталь и чугун.

Газовые теплообменники навесные котлов изготовлены только с меди, это касается первичных и битермических, вторичные теплообменники – это нержавеющая сталь.

Положительные черты медных теплообменников они компактны, устойчивы к коррозии, их сравнительно небольшие размеры дают возможность для установки в малогабаритные навесные котлы.

Медные теплообменники со своими незначительными размерами могут передавать больше тепла, чем стальные и чугунные, благодаря своим размерам.

Долговечность теплообменника зависит только от его правильной эксплуатации.

Как купить теплообменник котла?

Для заказа теплообменника Вам необходимо знать название оборудования, торговую марку, мощность котла и его версию: закрытая или открытая камера сгорания.

В случае, если данная модель нашим специалистам неизвестна, Вам необходимо будет указать длину рабочей части теплообменника котла и спецификации его подсоединения.

Вам нужно купить теплообменник котла, осуществить чистку или промывку теплообменника котла, мы к Вашим услугам, не в зависимости от расположения по территории России.

Если у Вас возникли трудности с определением модельного ряда котла – сделайте фото теплообменника с размерами и отправьте на электронный адрес компании.

Мы сможем на расстоянии определить нужный для Вас теплообменник, исходя из предоставленной Вами информации.

Инструкции и схемы помогут разобраться в эксплуатации, определить неисправность и правильно выбрать запчасть для ремонта Вашего газового оборудования. Купить запчасть, деталь для ремонта газового котла возможно в любом населенном пункте Российской Федерации:

Осуществляем доставку запчасти к газовым котлам в следующие города: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Самара, Омск, Казань, Челябинск, Ростов-на-Дону, Уфа, Волгоград, Пермь, Красноярск, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Ульяновск, Барнаул, Владивосток, Ярославль, Иркутск, Тюмень, Махачкала, Хабаровск, Новокузнецк, Оренбург, Кемерово, Рязань, Томск, Астрахань, Пенза, Набережные Челны, Липецк,Тула, Киров, Чебоксары, Калининград, Брянск, Курск, Иваново, Магнитогорск, Улан-Удэ, Тверь, Ставрополь, Нижний Тагил, Белгород, Архангельск, Владимир, Сочи, Симферополь, Севастополь и в другие города России и их районные центры.

Доставка газкомплект оборудования по городам России осуществляется наиболее удобными курьерскими службами по указанному Вами адресу. Отправляем теплозапчасть транспортными компаниями: «КиТ»; «Деловые линии»; «Логистическая компания ПЭК»; ТК «Энергия»; «DPD»; «CDEK»; «Почта России» и любым другим удобным для Вас способом. Также доставка осуществляется автобусом (через водителя по 100% предоплате) с автовокзала.

Форма оплаты:
– Наложенный платеж транспортной, курьерской службой;
– Оплата на платежную карту Visa, MasterCard, МиР;
– Оплата электронными деньгами Qiwi кошелёк и др.;

ВНИМАНИЕ! В нашей компании установлены следующие правила – в первую очередь обрабатываются заказы, что оформлены через корзину сайта, остальные по телефону или по почте по мере возможности. Если на сайте нет необходимого товара, в комментариях укажите нужный код. Ждем Вашего заказа. Спасибо.

Типы и свойства теплообменников для котлов

Прямая передача тепла от сгорающего топлива теплоносителю невозможна. В отопительных котлах она выполняется за счет работы специального устройства. Это теплообменник для газового котла. От его конструкции и материала зависит срок службы аппарата и его КПД.

  1. Основная функция теплообменника для котла
  2. Материал изготовления
  3. Сталь
  4. Чугун
  5. Медь
  6. Классификация теплообменников
  7. Первичные
  8. Вторичные
  9. Битермические
  10. Критерии выбора
  11. Правильная эксплуатация
  12. Возможные неисправности
  13. Популярные производители
  14. Navien
  15. Baxi
  16. И другие

Основная функция теплообменника для котла

В теплообменнике происходит нагревание воды, которая циркулирует в системе и передает тепло радиаторам

На горелку котла подают газ и воздух для сжигания. Газ горит, выделяя тепло, продукты сгорания выводятся вовне. Источник тепла в этом случае – элемент неподвижный.

Теплоноситель – вода или антифриз – поступает в теплообменник. Это устройство, которое обеспечивает теплообмен между двумя средами с разной температурой. Последний размещается в камере сгорания над горелкой. Вода, двигаясь по теплообменнику, нагревается и подается в трубы отопления. Чаще всего устройство имеет вид набора пластин или трубок. Чем больше его рабочая поверхность, тем лучше и быстрее нагревается вода.

Материал изготовления

Изготавливают теплообменник для котла из материалов прочных, хорошо проводящих тепло, не склонных к коррозии и достаточно устойчивых к давлению. Поскольку приходится учитывать и стоимость материала, выбор невелик.

Сталь

Стальной теплообменник дешевле в цене, но менее долговечный

Это самый доступный материал. Сталь очень прочная, но хорошо поддается обработке. Цена невелика. Плюс такого варианта – стойкость к высокой температуре. Сталь пластична и при нагреве не покрывается трещинами, не деформируется даже на участках, контактирующих с горелкой.

Стальной теплообменник на твердотопливный или газовый котел склонен к коррозии. Вода внутри трубок и продукты сгорания в камере котла разрушительно действуют на материал. Это сказывается на долговечности. Модель из стали много весит, это приводит к дополнительному расходу топлива на прогрев самого элемента.

Теплообменник из нержавеющей стали устойчив к коррозии и служит не менее 50 лет.

Чугун

Материал гораздо устойчивее к коррозии чем сталь, не боится ржавчины и действия кислотных ангидридов. Срок эксплуатации достигает 50 лет. Однако чугун – сплав хрупкий, под действием температуры может растрескиваться. Чтобы избежать повреждений, чугунный трубчатый теплообменник необходимо промывать: если используется обычная вода, то 1 раз в год; если антифриз – то 1 раз в 2 года; если дистиллированная жидкость – 1 раз в 4 года.

Читайте также:
Фактурная краска для внутренних работ, отзывы, фото

Вес элемента из чугуна еще больше, поэтому на нагрев приходится тратить больше топлива и времени.

Медь – благородный металл, не подверженный никаким видам коррозии. Она химически инертна, отлично переносит давление. Медь лучше проводит тепло, поэтому для нагрева самого элемента и протекающей жидкости требуется меньше топлива. Вес медной модели невелик, размеры компактны при очень развитой рабочей поверхности.

Недостаток – высокая цена. Также медный теплообменник слишком чувствителен к нагреву до высоких температур. Чаще встречается у котлов от зарубежных изготовителей.

Классификация теплообменников

Первичный теплообменник для контура отопления в виде змеевика с пластинами

Газовые котлы могут выполнять несколько функций. Главная – обогрев жилища. Однако двухконтурные модели также нагревают воду для разных бытовых нужд: от мытья посуды до ванной. По этому признаку и различают теплообменники.

Первичные

Обслуживает систему отопления. Представляет собой трубу с довольно большим диаметром, изогнутую в виде змеевика в одной плоскости. Чтобы увеличить рабочую поверхность устройства, здесь же размещают пластины разного размера.

Первичный теплообменник подвергается самым высоким нагрузкам. Извне на него действуют продукты сгорания – копоть, грязь, кислотные ангидриды, изнутри – соли, растворенные в теплоносителе. Чтобы снизить износ, деталь покрывают краской и обрабатывают антикоррозийными составами.

Лучший вариант – теплообменник из нержавейки или меди, так как он не подвержен ржавлению и не боится отложения солей.

Вторичные

Вторичный теплообменник для ГВС

Такой теплообменник нагревает жидкость для горячего водоснабжения. Температура его нагрева меньше, но и нагревать воду для бытовых нужд выше +60 С не стоит. Чаще всего это пластинчатая конструкция: собирается из множества пластин с выдавленными ходами, по которым циркулирует водопроводная вода. Многоходовые модели более эффектны, так как в пределах одной пластины жидкость несколько раз меняет направление, то есть находится в ней дольше и прогревается лучше. Изготавливают его из стали, меди, алюминия.

Битермические

Битермические теплообменники при засорении необходимо менять на новые

Представляет собой вставленные друг в друга 2 трубы. По внутренней перемещается теплоноситель, по внешней – вода для ГВС. Жидкость для отопления нагревается в камере сгорания и частично отдает тепло воде для бытовых нужд.

Конструкция гораздо дешевле. Но хотя вода здесь нагревается быстрее, ее объем ограничен. Кроме того, битермический теплообменник очень чувствителен к качеству воды и намного быстрее загрязняется. Чистить прибор недостаточно. Чтобы предотвратить быстрое засорение и вывод из строя, необходимо установить на входе фильтры для воды.

Очистить совмещенный теплообменник как обычный отдельный не удается. При больших отложениях соли или засорении элемент придется поменять.

Критерии выбора

Главный параметр теплообменника — его мощность

При выборе устройства учитывают назначение – в данном случае это нагрев теплоносителя, и тип среды – пар, воду, антифриз. Газовый котел обычно работает с водой, но бывают исключения.

Остальные критерии выбора:

  • Температура теплоносителя на входе и выходе – необходимо рассчитать, какое количество тепла должен получать потребитель. Исходя из этих данных вычисляют мощность теплообменника.
  • Допустимые потери по давлению – давление воды во время прохождения по теплообменнику снижается. Если оно падает слишком низко, не удается создать столб горячей воды достаточной высоты.
  • Максимальная рабочая температура – на горелке достигает 600–700 С. Такую температуру выдерживает чугунный и стальной теплообменник, медный с некоторым трудом. Алюминиевую модель использовать запрещается.
  • Максимальное рабочее давление – не ограничивает выбор конструкции или материала.

Значимым параметром оказываются габариты. При одинаковой эффективности кожухотрубный теплообменник занимает площадь в 3–4 раза больше, чем пластинчатый.

Правильная эксплуатация

Промывку теплообменника проводят в зависимости от жесткости воды

Транспортировка, монтаж и эксплуатация теплообменного устройства подробно описаны в инструкции:

  • Теплообменник в аппарате размещают так, чтобы к нему был свободный доступ для осмотра и ремонта.
  • Запуск выполняют при стабильных показателях давления и температуры. Нельзя повышать температуру быстрее, чем на 10 градусов в минуту или увеличивать давление больше, чем на 10 бар в час.
  • При заполнении водой воздушные клапаны и вентили за теплообменником остаются открытыми. После запуска насоса их закрывают. Таким образом добиваются стабильного давления.

Чтобы избежать отложения солей, на водопроводную трубу перед входом котел ставят фильтр.

Возможные неисправности

Стальные изделия подвергаются коррозии и подлежат замене

Большинство неполадок требует вмешательства специалистов. Некоторые может устранить и пользователь:

  • Снижение давления – если вызвано загрязнением, достаточно почистить теплообменник. При неправильном подключении к сети нужно сверить подсоединение с чертежом в инструкции.
  • Снижение КПД – при механическом загрязнении устройство промывают. Если причина в накоплении масла, некондиционных газов, устанавливают дополнительные устройства для их вывода.
  • Протечка – чаще всего вызвана разложением уплотнителей. Их заменяют.
  • Смешение рабочих сред – возникает при коррозии пластин или трубок. Пластины можно заменить частично, кожухотрубный теплообменник придется ставить новый.

Пока действует гарантия, запрещается самостоятельно вскрывать теплообменник и выполнять какой-либо ремонт.

Популярные производители

Теплообменник чугунный для напольного котла Белето

Теплообменники выпускают многие производители. Наиболее популярными в 2019 году были следующие компании.

Navien

Крупнейший корейский производитель. Выпускает изделия, предназначенные для бытовых котлов. Преимущество – стойкость к низкому качеству воды и гидроударам. Устройство прекрасно адаптировано к плохим условиям эксплуатации.

Итальянский изготовитель. Представляет на рынке настенные и конденсационные котлы напольные с чугунным теплообменником, а также электрические обогреватели.

Первичные теплообменники компания выполняет из меди и латуни. Для вторичных пластинчатых используется нержавеющая сталь. Это повышает стоимость изделий, но обеспечивает максимальную долговечность.

И другие

На рынке есть и другие достойные производители:

  • Fondital Victoria Compact – итальянская фирма. Предлагает битермические медные теплообменники высокой производительности.
  • Белето – известный российский завод, выпускает разнообразное газовое оборудование. Изготавливает стальные, чугунные и медные теплообменники разного типа.
  • Аристон – предлагает алюминиевые и медные теплообменники. Материалы нечувствительны к коррозии, а технология изготовления гарантирует их прочность.

Если есть необходимость увеличить КПД котла при замене устройства, консультируются со специалистом, чтобы рассчитать требуемые параметры.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: