Теплопроводность керамзитобетонных блоков: характеристики, коэффициент, таблица

Теплопроводность керамзитобетонных блоков: достоин ли особого внимания данный показатель?

Любой строительный материал, предназначенный в первую очередь для возведения стен, обладает свойством теплопроводности в большей или меньшей степени. Данный показатель будет характеризовать климатические условия внутри здания: теплообмен и уровень влажности.

Одним из стеновых материалов, отвечающим требованиям современного домостроения, является керамзитобетон. А теплопроводность керамзитобетонных блоков – одно из самых основных достоинств изделий из этого материала. Об этом немаловажном показателе и пойдет речь в данной статье.

Основные технические характеристики материала

Краткий обзор блоков из керамзитобетона

Керамзитобетон в настоящее время получил высокую популярность как среди строителей, так и застройщиков. Это обусловлено высокими показателями качества и сравнительно низкой стоимости продукции.

Так что же представляет собой данный материал?

Как следует из названия, основным компонентом, отличающим керамзитобетонные блоки от схожих изделий для строительства, является керамзит. Материал легкий, недорогой, а главное – прочный и обладающий свойством тепло- и звукоизоляции.

Помимо керамзита в состав блоков входит цемент, песок, вода и органические примеси в виде опилок или золы. Марка керамзита и цемента напрямую влияет на характеристики будущего материала и может варьироваться от М100 до М500.

Производственная технология керамзитобетонных блоков достаточно проста, и во многом схожа с производством блоков на основе других материалов. Готовая смесь закладывается в формы, сохнет и обрабатывается под воздействием высокой температуры.

Желающие сэкономить на строительстве, могут вполне попробовать сделать блоки из керамзитобетона своими руками. Однако при этом стоит учесть, что возможность изготовления некачественной продукции вырастает в разы.

Классификация керамзитобетона и область применения

В зависимости от пропорций составляющих материалов, некоторых различий в производственных процессах и области применения, различают керамзитобетон трех видов:

  • Теплоизоляционный
  • Конструктивно-теплоизоляционный
  • Конструктивный

Рассмотрим более подробно:

  1. Первый тип керамзитобетона используется исключительно в качестве теплоизоляции. Такой блок обладает малым весом и низкой плотностью, а вот свойство теплоизоляции, или температурного обмена у него значительно выше, чем у большинства материалов. Как видно на фото, теплоизоляционный блок внешне отличается особо выраженной пористостью.
  2. Второй тип – обладает большей плотностью и теплопроводностью, за счет этого показатели прочности возрастают, однако свойство передачи температур значительно снижается. Используется данный тип блока в качестве материала для возведения перегородок и внутренних стен.
  3. Третий тип, конструктивный, имеет наибольшую плотность. Может использоваться в качестве облицовочного стенового материала, для возведения перегородок с целью звукоизоляции и наружных стен малоэтажных построек. Такие блоки зачастую применяются в качестве одного из составляющих несущих конструкций при сооружении различных инженерных строений. Например, моста. Иногда используются как альтернатива бордюрному камню. Также может стать опорой для скамьи.

Обратите внимание! Каждый из данных видов керамзитобетонных блоков имеет свое достоинство и недостаток — и тут уж придется сделать выбор: либо страдает теплопроводность, либо прочность. Но при правильном подходе, это может и не отразиться на будущем здании. Например, теплоизоляционные блоки, обладающие наименьшей плотностью, отлично подойдут для строительства бани, для которой сохранение тепла – наиболее значимо. А вот при строительстве двухэтажного дома, лучше отдать предпочтение более плотным изделиям.

Теплопроводность как один из важнейших свойств материала для кладки стен

Теплопроводность, как физическое свойство предмета, представляет собой способность материала отдавать тепло. Коэффициент теплопроводности указывает на то, с какой скоростью и в каком объеме происходит передача энергии от более теплого предмета к холодному за один час, на площади, в основании равной 1 м2 и толщиной в 1 метр.

Показатели теплопроводности

Если сказать проще, то коэффициент теплопроводности керамзитобетонных блоков отвечает за способность сохранения температуры внутри здания — и чем выше данный показатель, тем быстрее строение будет нагреваться либо охлаждаться.

Разберемся, что же влияет на количественное значение коэффициента? Существует ряд факторов, оказывающих непосредственное влияние на способность к теплообмену стен будущего дома.

К ним относятся:

  • Пористость блока. На данный показатель влияет количество керамзита и его фракция. Чем больше пор, тем меньше вес и плотность, что в свою очередь влияет и на теплопроводность.
  • Размер блока и его пустотность
  • Исходный материал: соотношение пропорций и марка.

Рассмотрим всё это в форме таблицы более подробно: Зависимость теплопроводности блока от его плотности.

Теплопроводность керамзитобетона Вт/(м·°С) заводской показатель Показатель теплопроводности в условиях эксплуатации Вт/(м·°С) Показатель плотности
0,12 0,15-0,2 500 кг/м3
0,15 0,20-0,26 600 кг/м3
0,20 0,25-0,30 800 кг/м3
0,25 0,3-0,4 1000 кг/м3
0,35 0,4-0,5 1200 кг/м3
0,45 0,55-0,65 1400 кг/м3
0,55 0,7-0,8 1600 кг/м3
0,65 0,82-0,9 1800 кг/м3
Читайте также:
Такой близкий русский стиль в интерьере

Таблица 2. Краткая инструкция по расходу материала при приготовлении смеси для керамзитобетонных блоков разной плотности.

Цемент М400 Плотность керамзита, кг/м3 Количество керамзита, м3 Вода, л Песок, кг Плотность керамзитобетона
250 700 1,0 140 1000
430 700 0,8 140 420 1500
430 600 0,68 140 680 1600
400 700 0,72 140 640 1600
410 600 0,56 140 880 1700
380 700 0,62 140 830 1700

Таблица 3. Пустотность и ее влияние на свойства и массу блока

Помимо теплообмена, керамзитобетонные блоки обладают способностью контролировать уровень влажности в помещении: при повышении этого значения, влага поглощается, а при преобладании сухого микроклимата, влага отдается, таким образом, устанавливая наиболее комфортные условия пребывания.

Связь теплопроводности блоков и толщины стен будущего строения

Коэффициент теплопроводности керамзитобетона участвует в формуле по вычислению требуемой нормативной толщины будущих стен, которая равна произведению значения сопротивления тепловой передачи (δ), и показателя проводимости тепловой энергии (Rreg).

Например, предположим, что сопротивление равно 3,5 кв.см.*оС/Вт, а теплопроводность керамзитобетонного блока (λ) равна 0,3 Вт/м*оС. В этом случае, толщина стены рассчитывается путем перемножения данных значений. В итоге получаем: 3,5*0,3=1,05 метра.

Показатель сопротивления – напрямую зависит от климатических особенностей местности и типа будущего строения. Числовое значение данного показателя установлен СНиП 23-02-2002.

Обратите внимание! К расчетам оптимальной толщины стены следует подойти с особой ответственностью. Это поможет избежать расходов на дополнительное утепление стен, а в будущем — на отопление помещения.

Теплопроводность керамзитобетона в сравнении с другими строительными материалами

Пониженная теплопроводность керамзитобетонных стен с каждым годом побуждает все большее количество потенциальных покупателей приобрести именно этот вид строительного материала. Однако, говоря о керамзитобетоне, стоит обратить внимание на характеристики схожих по назначению стеновых материалов, какими являются: кирпич и изделия из ячеистых бетонов.

Обратите внимание на сравнительную таблицу.

Таблица 4: Показатели основных свойств стеновых материалов и рекомендуемая толщина стены.

Что такое теплопроводность керамзитобетонных блоков и как ее рассчитать?

Когда приходит время выбирать строительный материал, необходимо заранее изучить все его характеристики и свойства. Теплопроводность керамзитобетонных блоков важна при строительстве дома.

Данный показатель зависит от плотности и пористости материала, а так как блоки не являются слишком плотными, а больше представляют пористую структуру, то показатель у них низкий – следовательно, они хорошо сохраняют тепло в доме.

Что означает понятие?

Под данным понятием керамзитобетонных камней подразумевают величину, которая характеризует свойство материала проводить тепловой поток через толщу своего состава от одной поверхности к другой. Такая способность обусловлена наличием в материале градиента потенциала переноса. Нередко данную величину характеризуют с помощью обратной величины – термического сопротивления.

Есть материалы, которые передают тепло медленнее, а есть сырье, которое очень быстро передает тепло. Например, металл быстрее передаст тепло, чем теплоизоляционные материалы, поэтому их часто используют дополнительно для сохранения тепла в доме. Так как керамзитобетонный камень не имеет в составе большого количества твердых частиц, за исключением полнотелых камней, то его теплопроводность невысокая.

От чего зависит?

Этот параметр камней зависит от нескольких факторов:

  • пустотность;
  • размеры;
  • состав;
  • пористость.

Известно, что чем больше пустот находится в составе изделия, тем лучше его теплоизоляционные свойства. Полнотелые изделия, в структуре которые вообще нет пустот, то есть их пустотность равна 0%, имеют самый высокий коэффициент проводимости тепла. Однако такие изделия не способны сохранить тепло внутри дома, поэтому, если из них возводить стены, то потребуется дополнительная теплоизоляция утеплителем.

Пористость материала также влияет на этот параметр. Керамзит в составе камня имеет определенный объем и добавляется в изделие в определенной дисперсии. Чем больше пор в материале, тем меньше его масса и плотность, следовательно, эти показатели тоже оказывают влияние на проводимость тепла.

Важно! Данный показатель также зависит от состава блока, а точнее соотношением марки и исходных материалов в структуре.

Таблица коэффициентов

Чтобы понимать, какой бывает показатель у керамзитобетонных камней, можно изучить таблицу ниже. Он зависит от плотности изделия. Две колонки показывают, какую теплопроводность имеют камни в сухом состоянии и при эксплуатации.

Плотность изделия Значение в сухом состоянии, Вт (м°С) Значение в процессе эксплуатации, Вт (м°С)
1800 0,7-0,8 0,8-0,9
1600 0,5-0,6 0,7-0,8
1400 0,4-0,5 0,6-0,7
1200 0,3-0,4 0,5-0,6
1000 0,2-0,3 0,4-0,5
800 0,1-0,2 0,4-0,3
600 0,1-0,15 0,25-0,3
500 0,1 0,15-0,25

Как влияет толщина стены?

Когда проводимость тепла будет определена, необходимо рассчитать толщину конструкции.

Читайте также:
Цветные колеры для водоэмульсионной краски: виды, критерии выбора и правила разведения

Для этого также используется величина сопротивления теплопередачи энергии, которая зависит от типа здания и климатических условий региона, в котором происходит строительство дома.

На параметр также влияет толщина стены. Чем толще стена, тем выше ее способность проводить тепло. А если кладка выполнена из блоков, которые не имею пустот, то придется дополнительно ее изолировать, так как внутри нет воздуха и теплоизоляционные качества стен понижаются.

Требования для керамзитных камней

К блокам из керамзита и бетона предъявляются особые требования как по теплопроводности, так и по другим характеристикам. Это регламентируется документом ГОСТ 33126-2014. Отдельно существуют требования для несущих наружных и внутренних стен, а также отдельно для ненесущих перегородок.

Для несущих наружных и внутренних стен

Для строительства несущих наружных и внутренних стен рекомендуется использовать керамзитобетонные камни со средней плотностью и показателями теплопроводности 0,1-0,2 Вт (м°С).

Это конструкционно-теплоизоляционные блоки, которые подходят для возведения наружных стен, так как имеют хорошее соотношение твердых частиц с пустотами внутри них. Также этот материал может применяться и для утепления зданий снаружи.

Ненесущих перегородок

Для ненесущих стен и перегородок подходит специальный перегородочный камень теплоизоляционного типа или конструкционно-теплоизоляционный. Этот тип блока не рассчитан на большие нагрузки, поэтому используется только внутри помещения, не выполняет роли опоры для плиты перекрытия.

Пустотелые блоки позволяют по максимуму сохранить тепло из-за наличия большого количества отверстий или щелей. Но такие свойства говорят о том, что теплопроводность у них низкая и равна 0,1 Вт (м°С).

Как рассчитать?

Для разных климатических условий теплопроводность стен должна быть соответствующей.

В интернете есть несколько таблиц, где можно отыскать свой регион и понять, какие параметры должны соответствовать погодным условиям места строительства. Затем можно произвести самостоятельные расчеты по формуле.

Например, перед началом строительства при составлении проекта необходимо рассчитать толщину стен будущего дома с комфортными температурными условиями для проживания в нем. В формуле всегда фигурирует коэффициент теплопроводности стен для региона, для этого также используется величина сопротивления теплопередачи.

Формула выглядит так: δx Rreg=толщина стен для определенного региона.

Например, коэффициент сопротивления теплопередаче в Москве равен 3,28 кв.м x °C/Вт, а теплопроводность керамзитобетонного блока с плотностью 600 будет равна 0,15 Вт (м°С). По формуле 3,28×0,15=0,492 м. Из этого следует, что средняя толщина стен для Москвы с условием нормальной температуры внутри дома должна составлять не менее 49 см, если используются камни из керамзита и цемента.

Последствия неправильного выбора показателя

Если своевременно не рассчитать правильную теплопроводность керамзитобетонного блока и использовать камень с неподходящими показателями, то в скором времени жильцы дома могут столкнуться с проблемами. Во-первых, дом будет очень долго нагреваться, даже при использовании отопительных приборов. Если же камень подобран правильно, то дом прогревается уже за 2 часа полностью, несмотря на то, что до этого он был остывшим.

Еще одна проблема – необходимость дополнительного утепления. Эта процедура обязательно повлечет за собой траты денег. Подходить к процессу утепления необходимо грамотно, поэтому нужно привлекать специалистов – это также ведет к расходам. Поэтому лучше заранее определить нужную теплопроводность керамзитобетонного блочного материала и начинать строительство из него.

Заключение

Теплопроводность керамзитобетонных камней зависит от их пустотности, размеров, состава и пористости. Чем больше в структуре камня отверстий и воздушных камер, тем хуже показатель, но зато это говорит о хороших теплоизоляционных характеристиках. Полнотелые камни имеют высокую теплопроводность, но они не подходят для строительства, так как требуют утепления – поэтому для возведения стен используют сырье из керамзита с пустотами.

Теплопроводность керамзитобетонных блоков

Для чего смотрят на коэффициент теплопроводности керамзита?


Керамзитный гравий
От этого показателя зависит толщина стен будущего дома или сооружения нежилого назначения. При проведении расчетов нужно сразу учесть, что материал отличается хорошими показателями теплосбережения. Опыты показали, что использование керамзитобетона в качестве материала стен строения снижает утрату тепла на 75%. Такой процент разрешает возводить дом с нетонкими стенами.

Основные характеристики


Таблица сравнения теплопроводности строительных материалов
Отличные тепло- и звукоизоляционные свойства материала (приведены в таблице выше) обусловлены его пористой структурой и плотностью. Это делает блоки достаточно легкими. При изготовлении керамзитобетона используется специальная технология отжига, подобная той, которая применяется при производстве кирпичей.

В основа блоков – раствор из цемента, воды, песчаного наполнителя и керамзитовых гранул. При этом основную роль играет именно концентрация и размеры последних в составе.

Что касается самой теплопроводности, то ее коэффициентом называется количество тепла, проходящего за час через определенный строительный элемент (тело). При этом данные указываются для тела с площадью основания в 1 м2 и толщиной в 1 м.

Читайте также:
Укладка тротуарной плитки на бетонное основание: технология, правила, видео


Сопротивление материалов

При производстве самих блоков может варьироваться количество гранул в составе, создавая при этом элементы с нужными показателями. С их учетом керамзитобетонные блоки разделяют на:

  • Конструкционные. Используются для сооружения несущих элементов здания.
  • Теплоизолирующие. Имеют низкие показатели прочности, но зато обеспечивают высокую изоляцию.
  • Конструкционно-теплоизолирующие. Имеют средние характеристики прочности и теплосбережения. В основном применяются для изготовления сборных панелей.

С увеличением размеров гранул керамзита в бетоне снижается способность материала пропускать тепло, что разрешает сооружать конструкции с узкими стенами в местах, где их уровень прочности будет достаточный, чтобы выдерживать возлагаемые нагрузки.

Такие характеристики материала – находка для строительства. При небольшой ширине стен и, соответственно, массе не требуется создания высокопрочного основания, что сокращает затраты на строительство.

Значение теплопроводности керамзитоблоков

С развитием технологий в строительной сфере предоставлена возможность сокращения сроков работ и экономии средств. Одним из способов удешевления материалов является возведение здания из керамзитобетонных блоков. Эту методику нельзя назвать новой, хотя широкое распространение она получила относительно недавно. Благодаря целому ряду преимуществ и сравнительным характеристикам с другими видами (кирпичом, ракушечником), можно говорить о превосходящих качествах керамзитобетона.

Определение теплопроводности блоков

Производство блоков подразумевает смешивание цемента, песка и гравия размером от 5 мм. От величины наполнителя зависят энергосберегающие свойства и прочность. Чем более крупные зерна добавляются в смесь, тем выше показатель теплопроводности. Этот коэффициент керамзитобетона обозначают буквой λ, применяемой при расчетах количества энергии, которая проходит через несущую толщиной в 1 метр, создает сопротивление на площади в 1 м2 с разницей температуры в 1°С/час на внутренней и внешней сторонах поверхности. Факторы, влияющие на коэффициент теплопроводности керамзитоблоков, заключаются в следующих понятиях:

1. Количество и качество сырья, используемого для изготовления. Стандартно замешивают 1 долю цемента, 2 – кварцевого песка, 3 – гранулированного компонента.

2. Большое количество воздушных ячеек делает материал легким, что снижает коэффициент теплопроводности. Чем меньше пористость, тем камень имеет больший вес, что увеличивает показатель.

3. Определенных размеров керамзитоблоков не существует, их длина – диапазон от 250 до 450 мм, ширина – 180-450 мм, высота – 180-250 мм.

4. Также играет роль марка бетона, каждая имеет свою прочность на осевое сжатие (максимальная нагрузка кг/см2, которую он выдерживает на 28 день после отвердевания). У материала М35 и М50 эта величина составляет В3,5, М75 и 100 – В7,5, М200 – В1.

При определении теплоизоляции керамзитобетонных блоков можно воспользоваться таблицей:

Плотность (кг/м3) В сухом состоянии Вт (м°С) В процессе эксплуатации
1800 0,7-0,8 0,8-0,9
1600 0,5-0,6 0,7-0,8
1400 0,4-0,5 0,6-0,7
1200 0,3-0,4 0,5-0,6
1000 0,2-0,3 0,4-0,5
800 0,1-0,2 0,3-0,4
600 0,1-0,15 0,25-0,30
500 0,1 0,15-0,25

После определения теплопроводности керамзитоблоков делают расчеты толщины стен. В формуле этот показатель обозначают буквой δ. Также для вычисления используется величина сопротивления передачи энергии, зависящая от типа зданий и климатических условий и имеющая символ Rreg. Если взять среднее значение около 3 единиц, получится формула: δ= Rreg х λ. Допустим, теплопроводность блока составляет 0,2 Вт(м°С), в результате: δ=3х0,2=0,6 м – толщина стены.

В зависимости от своего предназначения блоки делятся на несколько типов:

1. При строительстве для теплоизоляции используется материал плотностью 400-600 кг/м3. Величина проводимости энергии у него составляет 0,1-0,17 Вт(м°С), прочность на сжатие – 5-22 кг/см2. Такой керамзитобетонный камень выдерживает только собственный вес, имеет неплотную структуру с большим количеством пустот, но обладает самым высоким показателем теплоизоляции.

2. Для сооружения несущих стен, цокольных этажей применяются полнотелые конструктивные блоки с содержанием бетона марок М300-400 и гравием мелких фракций. Является наиболее прочным среди всех видов, плотность составляет 1800 кг/м3. Также имеет высокие характеристики теплоизоляции – 0,55 Вт(м°С). Использование стеновых блоков позволяет увеличить площадь помещения за счет небольшой толщины стен. При этом скорость укладки в несколько раз выше, чем работа с кирпичом при тех же объемах.

3. На объектах с необходимостью снижения веса несущих используют конструктивно-теплоизоляционный керамзитобетон. Также этот материал применяется при производстве больших блоков и стеновых панелей. Плотность после застывания составляет 800 кг/м³, теплопроводность – 0,45Вт(м°С). При одинаковой толщине стены кирпич обладает более низкими свойствами.

По конструкции и размерам керамзитобетон можно разделить на две класса: стеновой и перегородочный вид. В таблице показаны типовые формы и их главные характеристики:

Читайте также:
Строительство каменной дровяной печи
Классификация по количеству пустот Параметры, мм Плотность (кг/м3) Процент пустотности Марка Морозостойкость Вес, кг
4 — канальный 390х190х188 800-900 35-40 М50 F50 10-15
7
8
10 15-18
Полнотелый 390х190х188 900-1000 М75 17-20
2-пустотный 390х190х230 1200-1400 20-25 М50 15-17
Для перегородок
Пустотелый 390х90х188 900-1000 25-30 М35 Не нормируется 5-6
Полнотелый 390х90х188 1000-1200 М50 8-10

Теплопроводность керамзитобетонных блоков в первую очередь зависит от их плотности и количества пустот. Чем крупнее фракции гравия, тем выше величина. Благодаря основному натуральному компоненту, материал обладает высокой экологической безопасностью, способен дышать, морозоустойчив и не поддается гниению.

Некоторые особенности материала и его коэффициент теплопроводности


Керамзитобетонный блок
Блоки из керамзитобетона – материала с продолжительным сроком службы, способны сохранять высокие характеристики прочности и теплоемкости на протяжении более 50 лет.

Размеры готовых элементов значительно ускоряют строительный процесс и при этом их кладку вполне можно выполнять собственноручно (без наличия специальной техники).

Размерные показатели определяются назначением блоков. Характеристики прочности зависят исключительно от цемента (М100-500).

Показатели плотности, кг/м3 Теплопроводность, Вт/(м·°С)
В условиях использования Изначальные данные
500 0,17–0,23 0,14
600 0,20–0,26 0,16
800 0,24–0,31 0,21
1000 0,33–0,41 0,27
1200 0,44–0,52 0,36
1400 0,56–0,65 0,47
1600 0,67–0,79 0,58
1800 0,80–0,92 0,66

Сравнение теплопроводности в таблице

Если рассматривать разрез керамзитобетонного блока, то он внутри имеет множество ячеек с воздухом. Это обусловливает его высокие показатели теплосбережения. Стоит отметить и способность керамзита влиять на уровень влажности в помещении. Он ее вбирает при слишком большой концентрации и отдает в случаях, когда воздух излишне сухой. Именно по этой причине в доме из такого материала всегда будет оптимальная влажность воздуха.

Теплопроводность блоков из керамзитобетона

Керамзитобетонные блоки имеют широкую сферу применения, в зависимости от марки, формы и пустотности они используются в качестве теплоизолятора или кладочных элементов для конструкций с разными несущими способностями. Их главными характеристиками являются прочность, плотность, морозостойкость и теплопроводность, все они связаны между собой. Последний параметр учитывается при проведении теплотехнического расчета для получения рекомендуемой строительными нормами толщины стен.

Коэффициент теплопроводности в количественном выражении показывает способность материала к проведению тепла: чем он ниже, тем выше его энергосберегающие свойства. Использование блоков с хорошим сопротивлением к потерям позволяет снизить затраты на обогрев зданий в зимнее время и кондиционирование летом. Обожженная глина является отличным теплоизолятором, термопроводность керамзитовых гранул варьируется в пределах 0,099-0,18 Вт/м·°C. Они считаются оптимальным заполнителем для получения легких бетонов и кладочных изделий.

Факторы влияния на величину теплопроводности керамзитоблоков

Этот строительный материал имеет многокомпонентную основу. Крошка без исключения будет иметь меньшую термопроводность, чем чистые обожженные гранулы вспученной глины. Ключевое влияние имеет качество используемого керамзита, характеристика зависит от размера и типа фракций, степени поризации, целостности оболочки, вида сырья и технологии обжига. Лучшие показатели имеет гравий с низкой насыпной плотностью и диаметром частиц в пределах 10-20 мм (0,099-0,108 Вт/м·°C), худшие – дробленый щебень и песок.

Повышение доли цемента в бетоне снижает его способности к энергосбережению.

Взаимосвязь между видом наполнителя и теплопроводностью керамзитобетонного камня отражена в таблице:

Вид инертного наполнителя Плотность бетона, кг/м2 Значение коэффициента, Вт/м·°C
Керамзитовый песок 500 0,14
600 0,16
800 0,21
1000 0,27
Кварцевый песок, используемый для приготовления поризованных элементов 800 0,23
1000 0,33
1200 0,41
Перлит 800 0,22
1000 0,28

Помимо параметров используемых компонентов коэффициент теплопроводности керамзитоблока зависит от следующих факторов:

  • Марки по плотности: чем она выше, тем хуже теплоизоляционные свойства материала.
  • Пустотности, а именно – количества и размера щелей в блоках. У данной группы ее максимальное значение достигает 40%, что соответствует 0,19 Вт/м·°C. Размер фракций керамзита, используемого для изготовления крупнощелевых разновидностей ограничен, качественные полнотелые изделия могут не уступать им в качестве.
  • Условий эксплуатации, несмотря на низкое водопоглощение (5-10%) при длительном контакте с влагой блоки могут начинать ее накапливать, что отрицательно сказывается на величине теплового сопротивления. Худшие показатели наблюдается при попадании и замерзании воды внутри полостей. Исключить риски помогают изделия с закрытыми пустотами, но они стоят немного дороже.

Тип блока Число щелей Размеры, мм Вес, кг Пустотность, % Плотность, кг/м3 Теплопроводность в сухом состоянии, Вт/м·°C
Перегородочный полнотелый 390×188×90 8 1200 0,36
То же, пустотелый 2 9 25 900 0,3
Стеновой 390×188×190 17 1200 0,36
2 14 20 1000 0,27
4 11-14 40 800-1000 0,19-0,27
7
8
10 390×188×230 13-16

В зависимости от целевого назначения выделяют три группы керамзитоблоков:

  • Теплоизоляционные, с плотностью в пределах 300-900 кг/м3 и теплопроводностью не более 0,2 Вт/м·°C. Не нормируется по прочности и подбирается при утеплении каркасных систем или закладывается между другими стеновыми изделиями.
  • Конструкционно-теплоизоляционные – от 700 до 1200 кг/м3, до 0,5 Вт/м·°C, выдерживаемые нагрузки от 35 до 75 кгс/м2. Эта разновидность наиболее востребована в частном строительстве, сфера использования включает возведение внутренних перегородок, панелей и стен, в том числе несущие.
  • Конструкционные – от 1200 до 1800 кг/м3, с теплопроводностью до 0,66 Вт/м·°C. Из-за высокой нагрузки на фундамент блоки с такими характеристиками редко используются для возведения стен частных домов, область их применения совпадает с марками тяжелого бетона.
Читайте также:
Что такое байпас в стабилизаторе напряжения

Теплопроводность является основным показателем, учитываемым при расчете толщины строительных систем. Находится по формуле: δ=R·λ, где R – величина теплового сопротивления, определяемая из таблиц с учетом климатических условий региона и типа конструкции, среднее значение по Москве составляет 3-3,1 м2·°C/Вт.

Используя данные производителя, находится минимально допустимая толщина стены из керамзитоблоков, разделяющей разнотемпературные зоны при поддержке комфортных условий внутри дома. При несоответствии ширины кладки с полученным результатом здания нуждаются в наружном утеплении. Аналогичный расчет проводится при обычной засыпке конструкций грунтами керамзита, итоговые данные применяются для определения правильной толщины прослойки.

Достоинства керамзита


Характеристики керамзитобетона в таблице
Также материал отличается:

  • Полной безопасностью для здоровья. При проживании в сооружениях, возведенных и керамзита, не будет наблюдаться ухудшения состояния у членов семьи из-за воздействия на организм вредных веществ. Он экологически чист.
  • Уменьшением трудозатрат на укладку блоков благодаря большому размеру элементов. При этом для выполнения работы нет надобности нанимать специальную технику или бригаду работников.
  • Повышенной морозостойкостью (при условии использования высоких марок цемента) и высокой плотностью структуры. Уровень устойчивости к температурам зависит от конструктивного назначения элементов.
  • Небольшой массой – снижает нагрузку на основание.
  • Способностью продолжительное время сохранять отличные показатели.
  • Паропроницаемостью. Дом из керамзита будет «дышать».

Выбирая для сооружения дома или другого строения керамзитобетонные блоки, можно получить прочную и долговечную конструкцию. Использование материала позволит в случае правильного подбора изоляции, отделки и других составляющих сооружения создать оптимальную среду для проживания человека. Только на стадии проектирования обязательно нужно правильно рассчитать ширину стен.

Коэффициент теплопроводности керамзитобетона (керамзитоблока)

Теплопроводность керамзитобетона – основное преимущество, которое делает строительный материал популярным в выполнении самых разных ремонтно-строительных работ. Керамзитобетон относится к категории легких бетонов, может производиться в формате смеси или блоков самых разных форм, размеров, плотности, пустотности, с определенными характеристиками и свойствами.

Керамзитобетон – это материал, для получения которого смешивают цемент, песок и керамзит в качестве наполнителя. Керамзит производят посредством обжига специальных сортов глины с грануляцией состава, на выходе получая круглые гранулы разной фракции (керамзитовый гравий). Именно благодаря наличию в составе керамзита определяются основные свойства керамзитобетона – тепло/звукоизоляция, малый вес, стойкость к воздействию внешних негативных факторов.

Керамзитобетон может очень существенно отличаться по теплопроводности, плотности, размеру и весу, марочной прочности. Каждый вид материала предполагает свои пропорции исходных компонентов – кварцевого песка, цемента, керамзитового гравия. Также могут отличаться фракции керамзита для производства разных марок материала. В составе некоторых бетонов применяют дробленую и даже песчаную фракцию керамзита, отсев с производства и т.д.

В состав материала могут вводиться различные синтетические добавки для улучшения свойств, ускорения процесса созревания бетона, водоудерживающего эффекта. Керамзитобетон сегодня производят многие предприятия, при выборе желательно обращать внимание не только на нужные технические характеристики, но и соблюдение технологии производства, качество самой продукции, наличие сертификатов.

Основные технические характеристики материала

Керамзитобетон может демонстрировать разные свойства, в зависимости от марки, состава, особенностей производства и т.д. Но основные показатели находятся в пределах, которые можно четко обозначить (и регулировать при необходимости разными методами).

Краткий обзор блоков из керамзитобетона

Керамзитобетон сегодня является очень популярным материалом, который используют в самых разных сферах строительства. Сравнительно невысокая цена, хорошее качество и высокий коэффициент теплопроводности керамзитобетона сделали его востребованным при проведении ряда работ.

Основное отличие керамзитовых блоков от любых других – наличие в составе керамзита, который придает материалу легкость, высокие тепло/звукоизоляционные свойства, прочность, стойкость. Также в состав вводят цемент, песок, воду, присадки для улучшения тех или иных технических характеристик. Марка керамзита и цемента оказывает влияние на марку готового материала, который может соответствовать требованиям марок от М100 до М500.

  1. Замешивают раствор, точно дозируя компоненты и соблюдая последовательность их введения в состав (цемент, песок, керамзит, вода).
  2. Далее формуют блоки – заливают смесь в формы, уплотняют для удаления воздушных полостей с применением вибростенда или пресса. Удаляют излишки раствора.
  3. Автоклавная обработка изделий – где в специальных бункерах на материал воздействуют высокое давление и горячий пар. Если автоклавная обработка отсутствует, блоки отправляют дозревать в специальном хранилище с оптимальным уровнем влажности/температуры.
  4. Распалубка: если изделия сушатся в естественных условиях, то через 3-4 дня, автоклавный керамзитобетон можно раньше извлекать. Далее материал выдерживают 28 дней для полного набора прочности.
Читайте также:
Утепление крыши пеной: как сделать это правильно своими руками?

Кроме состава и особенностей компонентов, на качество блоков также влияет обработка: автоклавные керамзитоблоки более прочные и стойкие, не так сильно впитывают воду, более стабильны. Вибропрессование обеспечивает более плотную структуру, что исключает возможность появления сколов, трещин и т.д.

Классификация керамзитобетона и область применения

Керамзитобетон может отличаться по марке, различным показателям, но главным свойством считают плотность. Именно плотность определяет уровень тепло/звукоизоляции материала, его прочностные характеристики (которые находятся в обратной пропорции: чем выше плотность, тем выше прочность и меньше изоляционные свойства, и наоборот).

Таким образом, плотность и прочность находятся во взаимодействии с теплоизоляционными характеристиками и при выборе материала необходимо искать баланс и подбирать блоки с учетом основных требований.

Теплопроводность как одно из важнейших свойств материала для кладки стен

Теплопроводность – физическое свойство материала, которое отображает его способность отдавать тепло. Так, коэффициент теплопроводности указывает на скорость и объем передачи тепловой энергии от теплого предмета к более холодному за час на площади в 1 квадратный метр толщиной в 1 метр.

Показатели теплопроводности

Коэффициент теплопроводности керамзитоблока демонстрирует способность материала сохранять температуру внутри здания – чем значение выше/больше, тем быстрее здание или конструкция будут охлаждаться или нагреваться. На показатель теплопроводности влияет ряд важных факторов.

  • Пористость материала – чем больше пор и в них воздуха, тем ниже коэффициент теплопроводности (и выше показатель теплоизоляции), а также меньше плотность, вес, прочность. На число и объем пор влияют объем керамзита и фракция наполнителя.
  • Величина блока, его пустотность – та же зависимость.
  • Исходный материал – соотношение компонентов в составе, марка керамзитобетона, точность соблюдения технологии.

В таблице указана прямая зависимость теплопроводности керамзитобетона от его плотности:

А тут рассмотрены пропорции материала для приготовления смеси/блоков с разными показателями плотности:

Керамзитоблоки также имеют способность контролировать в помещении уровень влажности: при его повышении блок впитывает влагу, а потом при иссушивании воздуха отдает ее обратно. Так в помещении всегда соблюдается оптимальный микроклимат.

Связь теплопроводности блоков и толщины стен будущего строения

Коэффициент теплопроводности обязательно учитывают в формуле при вычислении оптимальной нормативной толщины стен будущего здания. Для просчета значения нужно знать две величины – коэффициент теплопроводности материала (обозначается в формуле λ) и коэффициент сопротивления теплопередаче (устанавливается строительными правилами и нормами в соответствии с погодными условиями региона, обозначается как Rreg).

Пример: для расчета оптимальной толщины стены здания, которое возводится в Москве или регионе, величину Rreg берут 3-3.1 (установлена в правилах). Стены можно строить из любых блоков, от их коэффициента теплопроводности зависит значение. Так, в примере можно взять блоки плотностью 600 кг/м3, теплопроводность по нормативу которых составляет 0.15 (и 0.20-0.25 для эксплуатации).

То есть, толщина стены при строительстве из указанных блоков должна быть в пределах 45-66 сантиметров. Опытными мастерами указывается в качестве оптимального значения толщина в 40-60 сантиметров для центральных регионов России, Москвы и регионов.

Теплопроводность в сравнении с другими строительными материалами

Керамзитобетон обладает пониженной теплопроводностью, которая зависит от марки и плотности материала. По показателю с керамзитобетоном могут сравниться газобетон и пенобетон (у них показатель чуть ниже), древесные материалы. Практически все ячеистые бетоны демонстрируют низкие значения теплопроводности, в связи с чем их очень часто используют в строительстве.

Ниже в таблице указаны показатели ключевых свойств разных материалов:

Тут можно посмотреть толщину стен из разных материалов, которые дают примерно одинаковый уровень теплопроводности:

Как видно, керамзитобетон демонстрирует оптимальные показатели теплопроводности, поэтому может успешно применяться для возведения разных типов зданий.

Недостатки и достоинства материала

Как и любой другой строительный материал, керамзитобетон обладает своими плюсами и минусами, которые обязательно нужно учитывать до начала строительства, в процессе проектирования и выполнения расчетов.

  • Простота в монтаже и высокая скорость кладки за счет больших размеров блоков и малого веса.
  • Экологичность и безопасность – керамзитобетон не горючий, производится на основе натуральных компонентов, поэтому не представляет опасности для здоровья и самочувствия людей.
  • Высокий уровень адгезии с любыми материалами за счет пористой поверхности керамзитобетона.
  • Разумная стоимость – строительство дома из керамзитобетона обходится значительно дешевле, чем из кирпича, к примеру.
  • Стойкость к разным воздействиям, высокая прочность.
  • Хороший уровень тепло/звукоизоляции.
Читайте также:
Увлажнители воздуха Scarlett: достоинства, недостатки и лучшие модели

  • Полное отсутствие усадки, что исключает вероятность возникновения трещин.
  • Понижение стоимости фундамента за счет уменьшения нагрузки на основание из-за малого веса керамзитобетона.
  • Низкое значение теплопроводности, что позволяет отказаться от дополнительного утепления и существенно экономить на отоплении.
  • Из-за пористой поверхности блоки могут впитывать влагу, а потом при замерзании разрывать структуру, провоцируя распространение трещин и деформаций.
  • Сравнительно небольшой выбор типоразмеров – обычно представлены лишь стандартный величиной 39х19х18 сантиметров и половинный с толщиной 9/12 сантиметров.
  • Вероятные сложности с крепежами – нужно подбирать специальные элементы для прочного соединения.
  • Обязательное выполнение внутренней и внешней отделки, так как керамзитобетонные блоки выглядят неэстетично и требуют защиты от влаги, внешних воздействий.
  • Блоки хрупкие – часто при транспортировке разрушается большая часть материала, который боится деформаций и механических нагрузок, могут появиться сложности при обработке блока.

Теплопроводность керамзитобетона – показатель, который обязательно нужно учитывать при выборе материала и просчете оптимальной толщины стены, так как именно от него будут зависеть выбор системы отопления, необходимость в дополнительном утеплении, комфорт в эксплуатации и цифры в счетах за отопление.

Как рассчитывают коэффициент линейного расширения бетона?

Для того чтобы построить прочное здание, специалисты определяют коэффициент линейного расширения бетона. Так строитель может узнать, на сколько изменится в длину материал после нагревания. Такие расчеты позволяют избежать преждевременной деформации постройки, появление трещин и увеличить эксплуатационную стойкость сооружения.

  1. Что это такое?
  2. Как рассчитать показатель температурного расширения?
  3. Температурный показатель
  4. Теплоемкость
  5. Как регулировать?

Что это такое?

Термин коэффициент расширения бетона обозначает, как сильно расширяется строительный материал при увеличении температуры.

Понятие связано с теплоемкостью и теплопроводностью раствора. Бетон, который может расширяться, имеет в составе добавки или напрягающий цемент. Таким образом, в результате получается стойкая смесь, которая способна изменяться в размере. Кроме этого, для создания конструкции необходимы швы, поддерживающие блоки. Если возникает слишком большой температурный перепад, то бетон может потрескаться. Для этого стараются правильно подобрать состав материала с высоким коэффициентом, поэтому можно предотвратить появление трещин.

Как рассчитать показатель температурного расширения?

Можно самостоятельно измерить расширение. Для этого измеряется исходная длина. После температура повышается на 1 градус. Стоит помнить, что уровень тепла должен быть одинаковый по всему периметру. После уточняют величину удлинения. Для микроизменений используют микроскоп. Кроме этого, коэффициент теплового расширения бетона можно вычислить по формуле: l=l0(1+α⋅ΔT). В этом уравнении l обозначает расширение, ΔT — температуру, при которой произошли изменения, а l0 — начальная длина.

Температурный показатель

Коэффициент можно найти в таблице, в которой даются средние значения. По табличным данным для бетона этот показатель равен 0,00001 (ºС)-1. Так, при 80 градусах увеличение будет 0,8 мм/м. Но такие табличные данные не являются довольно точными, так как во всех схемах предоставлены усредненные значения. Потому желательно самостоятельно измерять или рассчитывать показатели.

Данный показатель для каждого вида материала будет отличаться.

Теплоемкость

Коэффициент температурного расширения неразрывно связан с теплоемкостью, используемых при строительстве. Под этим термином подразумевает определенное количество тепла, которое нужно смеси для того, чтобы поднять температуру. Так как выделяют несколько типов растворов, то и коэффициент будет меняться от наполнителей. Так, теплоемкость воздушно-сухого бетона равняется 1,35 Вт (м*°С). Это говорит о том, что показатель высокий и потому нужен дополнительный утеплитель. У пористых смесей значение теплоемкости низкое (0,35—0,75 ВТ).

Данный коэффициент зависит и от теплоемкости материала.

Как регулировать?

Значение зависит от таких факторов:

  • температуры;
  • класс;
  • наполнителя.

Заполнитель и цемент имеют разный температурный коэффициент. Потому при нагревании и расширении может происходить деформация и появляются трещины. Для того чтобы это не произошло применяют специальные швы. Кроме этого, увеличивают армирование строительной конструкции. Бетон делят на отдельные блоки. Но эти методы дорогостоящие и не всегда эффективны. Потому для результата используют напрягающие и расширяющие вяжущие.

Коэффициент линейного расширения бетона

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Читайте также:
Что такое термоэлектрический генератор?

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Практическая плотность тяжелого (обычного) бетона составляет 2,3 г/см3 = 2300 кг/м3. (1,8-2,7 г/см3 ).

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе – при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри – еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс – набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм – усадка, 0,8 – температурный), в СНИПах – величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов – от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии – порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона – порядка 2,5 кДж/(м3*К) а пористых – зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните – смесь легче тяжелого бетона и тяжелее пористого.

Теплоемкость бетона Коэффициент расширения бетона

При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Читайте также:
Техноруф В60: технические характеристики, плотность

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.

Температурный коэффициент линейного расширения

Коэффициент линейного теплового расширения

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Вас также может заинтересовать:

Коэффициент объемного расширения

ТКЛР материалов, используемых в электронике

Коэффициенты линейного расширения строительных материалов

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Теплоемкость бетона Коэффициент расширения бетона

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Температурно усадочные швы

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

Углеродистые стали

В таблице приведены значения коэффициента линейного расширения углеродистой стали в интервале температуры от -173 до 1000°С. При нагревании такой стали ее ТКЛР увеличивается и может достигать 19,8·10 -6 град -1 (для стали У8) в диапазоне температуры 27-650°С.

Хромистые стали

Хромистые стали имеют коэффициент линейного расширения в среднем от 10 до 13·10 -6 град -1 . Дополнительно стоит отметить стали ШХ15 и 40Х, значение ТКЛР которых составляет 13,4…15,7·10 -6 град -1 .

Читайте также:
Техноруф В60: технические характеристики, плотность

Хромомолибденовые стали

Хромомолибденовые стали по сравнению с другими типами имеют относительно невысокие значения ТКЛР. Коэффициенты линейного расширения стали этого типа имеют величину 9,7…15,5·10 -6 град -1 при температурах до 1000°С.

Теплоемкость

Под теплоемкостью бетона понимают количество тепла, которое необходимо передать материалу для изменения его температуры на одну единицу. Размер бетона, изменяющийся под воздействием температуры, называют коэффициентом температурного расширения.

Углеродистые стали

В таблице приведены значения коэффициента линейного расширения углеродистой стали в интервале температуры от -173 до 1000°С. При нагревании такой стали ее ТКЛР увеличивается и может достигать 19,8·10 -6 град -1 (для стали У8) в диапазоне температуры 27-650°С.

Хромистые стали

Хромистые стали имеют коэффициент линейного расширения в среднем от 10 до 13·10 -6 град -1 . Дополнительно стоит отметить стали ШХ15 и 40Х, значение ТКЛР которых составляет 13,4…15,7·10 -6 град -1 .

Хромомолибденовые стали

Хромомолибденовые стали по сравнению с другими типами имеют относительно невысокие значения ТКЛР. Коэффициенты линейного расширения стали этого типа имеют величину 9,7…15,5·10 -6 град -1 при температурах до 1000°С.

Ленточный

Наиболее популярным основанием для возведения частного дома считают ленточный фундамент. Он представляет собой своего рода замкнутую ленту из бетона, проходящую под всеми несущими стенами здания.

Для средней полосы, при возведении небольших частных домов и бань, достаточно выполнить заглубление в пределах 1500 мм с высотой наземной части до 400 мм.

Формула расчета выглядит так:

V=h*b*l, где:

  • V – объем раствора в м 3 ;
  • h – высота в м;
  • b – ширина в м;
  • l – длина ленты в м.

В итоге получаем более точную формулу расчета объема бетона для ленточного фундамента:

V=h*b*l + 0,02*(h*b*l)

Полученное значение округляется до целого числа. Для наших примеров уточненное вычисление будет выглядеть так: для дома 6х6 V=24+0,02*24=24,48 (25) м 3 , для дома 10х10 V=48+0,02*48=48,96 (49) м 3 .

Столбчатый

Чтобы высчитать объем столбов с квадратным или прямоугольным сечением, нужно использовать следующую формулу:

V=a*b*l*n, где a и b – стороны сечения столба, l – длина столба, n – количество столбов в фундаменте.

Для вычисления объема бетона для заливки столбов с круглым сечением, понадобится формула нахождения площади круга: S=3,14*R*R, где R – радиус. Получаем формулу вычисления объема столбов с круглым сечением:

V=S*L*n

Для получения общего объема бетона, требуемого для заливки столбов и ростверка, необходимо сложить уже полученные показатели, не забывая про коэффициент погрешности в 2%.

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К -1 ).

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник:
В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Коэффициент теплового расширения бетона

Теплоемкость

Под теплоемкостью бетона понимают количество тепла, которое необходимо передать материалу для изменения его температуры на одну единицу. Размер бетона, изменяющийся под воздействием температуры, называют коэффициентом температурного расширения.

Теплопроводность

Теплопроводность – одна из важнейших теплофизических характеристик. Высокая теплопроводность тяжелого бетона является его недостатком. Панели для наружных стен производят из тяжелого материала с включением внутреннего слоя утеплителя.

Коэффициент температурного расширения бетона

Коэффициент расширения бетона

Так как коэффициенты температурного расширения бетона и стали по величине очень близки, то температурные напряжения не нарушают монолитности железобетона. [c.28]

Температурный коэффициент линейного расширения бетонов [c.188]

В жаростойком железобетоне арматуру располагают в местах, где температура не превышает 350° С. При более высоких температурах температурное расширение арматуры больше, чем у бетона, [c.72]

Предел прочности, МПа, при. сжатии растяжении изгибе Адгезия к бетону, МПа Коэффициент линейного температурного расширения в пределах температур 40. 100 °С, ГС [c.92]

Примечание 1. Эмпирические формулы для вычисления температурного коэффициента линейного расширения бетонов в интервале температур от —30″ до 0°С ( ) и от О до +40°С ) я з вискиости от лажностк по объему т (%) и температуры Г °С следующее [c.189]

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: