Тепловая труба: схема, титановые варианты, принцип действия, устройство

Тепловые трубы — конструкция и принцип действия

Для наиболее эффективной передачи тепловой энергии от одного источника к другому потребителю применяются тепловые трубы. Они способны транспортировать на большие расстояния разный тип теплоносителя при небольших потерях мощности и незначительном перепаде температуры. Однако это не значит, что тепловые трубы можно использовать только в системах отопления зданий.

Принцип действия тепловых труб

Принцип действия тепловых труб заключается в том, что передача тепловой энергии в них осуществляется за счет испарения и конденсации жидкого вещества. Если представить замкнутую емкость из металла, который обладает хорошей теплопроводность, например, медь с определенным количеством воды, то при нагревании одной части резервуара вода становиться паром, то есть из жидкого состояния она переходит в газообразный вид. Далее водяные пары поступают на охлажденную поверхность, где вода становится снова жидкой и стекает на старое место. При этом значительная часть тепла отводится через корпус металлической емкости.

Принцип устройства тепловой трубки

Простейшая конструкция тепловых труб состоит из следующих частей:

  • корпус из металла, который хорошо проводит тепло;
  • рабочая среда из жидкого вещества;
  • фитиль, который представляет твердое вещество с порами для движения жидкости.

Корпус тепловой трубы должен быть сделан из прочного материала, который должен создать надежную степень герметичности. В качестве материала могут быть использованы сплавы различных металлов, стекло или керамика.

Корпус трубы должен быть заполнен жидким веществом, которое способно переходить из естественного состояния в газовую среду при рабочей температуре эксплуатации трубы. Это вещество является главным средством переноса тепловой энергии.

Так называемый фитиль предназначен для того, чтобы жидкость могла перемещаться по капиллярам из одной части устройства в другую. Материалом для данного фитиля может быть любое вещество с пористой структурой, иными словами с каналами для продвижения жидкости.

Вышеописанное устройство называют тепловая трубка Гровера.

Это американский ученый, который в 1963 году усовершенствовал конструкцию тепловой трубы и представил ее научной общественности. Если раньше в тепловой трубе жидкость стекала под действием силы притяжения самотеком, то в устройстве ученого из США впервые был использован капиллярный способ ее перемещения.

Как видно, данное устройство является не очень сложным, однако технический расчет тепловой трубы могут сделать только специалисты, которые способны правильно выбрать материал устройства, его размеры и рабочие характеристики.

Функции тепловых труб весьма разнообразны, однако главная задача – эффективная передача тепловой энергии из одной части устройства в другую. Предел практического действия тепловых труб ограничен только прочностью и надежностью корпуса. Температура рабочей среды может варьироваться от абсолютного нуля до тысяч градусов.

Передача тепловой энергии может происходить с помощью нескольких способов:

  • нагрев трубы при помощи открытого пламени;
  • непосредственный контакт с нагретым веществом;
  • при помощи электрического тока.

Контурные тепловые трубы

С развитием науки и технологий затем была изобретена тепловая труба, в которой отсутствует фитиль. Его роль выполняют специальные контурные трубки, по которым происходит перемещение рабочей среды. Так появились контурные тепловые трубы.

Они имеют несомненные достоинства:

  • высокий уровень теплопередачи;
  • простая конструкция, которая не требует большого количества материала;
  • надежность в работе;
  • хорошая степень адаптации к различным условиям;
  • в их составе отсутствуют подвижные механические элементы;
  • очень большой срок эксплуатации;
  • сохранение рабочих характеристик в любом пространственном положении.

В принципе, они представляют собой такие же капилляры, но немного большего размера и предназначены для других условий эксплуатации. Контурные трубы обладают прекрасными качествами по передаче тепла. По сути, их можно назвать сверхпроводниками тепловой энергии.

Область применения тепловых труб

Сфера использования тепловых труб весьма разнообразна:

  • Передача тепловой энергии с минимальными затратами для различных объектов и зданий.
  • Отвод тепла в устройствах микроэлектроники, даже в ПК существуют данные устройства.
  • Оборудование современных систем отопления производственных и жилых помещений.
  • Холодильники и устройства охлаждения.
  • Космическая промышленность.
  • Медицина.
  • Строительство дорог и домов в условиях вечной мерзлоты.
  • Обеспечение теплом теплиц и т.п.

Трудно перечислить все отрасли промышленности, где используются тепловые трубы. В настоящее время готовятся разработки с использованием нанотехнологий, ученые уже подошли к тому, что работа человеческого тела с многочисленными капиллярами основана на том же принципе, что и обычные тепловые трубы.

Трубы для систем отопления

Далее рассмотрим, как используются трубы для тепловых сетей для обогрева домов и зданий любого назначения. Ведь для обычных обывателей отопительные и тепловые трубы являются равноценным понятием.

Отопительные трубы могут быть из асбестоцемента, стали со слоем цинка, стали с покрытием из керамики или эмали, а также это может быть сочетание двух различных металлов – биметалл.

Асбестоцементные тепловые трубы производят из смеси асбеста, который играет роль арматуры и цемента, придающего форму и прочность изделия.

Достоинства данных изделий:

  • полное отсутствие коррозии;
  • сохранение рабочих характеристик при температуре воды до 130 градусов;
  • дешевизна;
  • минимальные потери тепловой энергии при транспортировке горячей воды.

Теплопроводность труб из асбестоцемента значительно ниже, чем у аналогичных изделий из металла. Помимо этого монтаж асбестоцементных труб осуществляется проще и удобнее, чем стальных изделий.

Однако есть и недостатки, главный из которых – недостаточный уровень прочности при воздействии механической нагрузки. Для оборудования отводов и изгибов производители не выпускают дополнительные элементы.

Тепловые биметаллические трубы производятся из стали, которая сверху покрывается другим металлом. Это необходимо для предотвращения коррозии стали. Толщина наружного защитного слоя может быть до 20% толщины изделия. Помимо этого, теплоотдача такой трубы ниже, чем у обычных стальных изделий.

Преимуществами данных труб являются:

  • высокие антикоррозийные характеристики;
  • большой срок эксплуатации;
  • потери тепловой энергии ниже, чем у стальных труб.

Однако их использование в больших тепловых коммуникациях ограничено из-за высокой стоимости.

В современных системах отопления магистральные коммуникации оборудуются теплоизолирующими материалами. Труба с тепловой изоляцией значительно снижает потери тепловой энергии, а в районах вечной мерзлоты и в условиях расположения магистрали на улице это обосновано экономически.

Если раньше утепление производилось с помощью обычной минеральной ваты, которая была обернута в рубероид, то сейчас используются самые современные технологии.

Существуют два варианта современного утепления отопительных труб. Первый вид — готовые формы из стекловолокна и минеральной ваты, которые запрессованы в полимерный короб. Этот вид утеплителя используется, в основном, для теплосетей, находящихся на открытом воздухе.

Второй вариант — это когда слой полимера наносится на трубу еще на стадии ее производства. При сварке труб используются специальные утеплители для шва.

Тепловая изоляция для труб может производиться из следующих материалов:

  • армированный пенобетон;
  • смесь минерального волокна и пенополимера;
  • пенополиуретан.

Фактически труба отопления поставляется специалистам по монтажу как бы одетой в защитный короб из толстого слоя утеплителя. Слой теплоизоляционного материала прочно расположен на поверхности изделия. Утепленные таким способом трубы впоследствии не нуждаются в дополнительной гидроизоляции, так как вышеперечисленные материалы не впитывают влагу.

Все эти новшества полезны не только для сохранения тепла, но и в значительной мере упрощают монтажные работы и сокращают их сроки.

Стальные трубы с цинковым покрытием, как правило, используются в системах отопления с температурой воды не больше семидесяти градусов. Однако для цинка важен состав теплоносителя. Если в нем присутствуют кислотные или щелочные составы, то они постепенно разрушают данные изделия.

Читайте также:
Транспортировка ракушняка

В последнее время стали популярными чугунные трубы шаровидной структуры. Их отличает по сравнению с обычным чугуном высокая прочность и надежность. Они обладают высокой устойчивостью к коррозии и очень большим сроком службы, не менее 50 лет. Стоимость чугунных труб с шаровидной структурой намного ниже, чем стальных аналогов.

Трубы чугунные с шаровидным графитом

Но стальные трубы с тепловой изоляцией наиболее предпочтительны в условиях сурового климата нашей страны. А для продления срока эксплуатации при производстве стальных труб используются достаточно эффективные добавки из алюминия и никеля. К тому же, внутренние стенки труб также дополнительно обрабатываются в целях защиты от коррозии.

Серьезный недостаток стальных труб – высокий коэффициент теплопроводности, из-за которого тепловая энергия уходит в землю или окружающий воздух. Но технологии и научные разработки не стоят на месте и постепенно разрабатываются новые материалы для устранения всех недостатков отопительных труб.

Яркий пример использования новых методов борьбы с коррозией и уменьшением теплоотдачи – стальные трубы с эмалевым покрытием. Снаружи трубы при ее производстве наносится тонкий слой эмали, который состоит из кремния, обработанного в условиях высоких температур.

Защитный слой может наноситься как снаружи, так и на внутренних стенках трубы. При этом значительно улучшаются гидродинамические характеристики и долговечность изделий. Дело в том, что внутри трубы с течением времени образуются смолистые и солевые отложения, уменьшая пропускную способность трубопровода. А использование силикатно-эмалевого слоя препятствует этому, антикоррозийные характеристики повышаются.

Расчет рабочих характеристик контурных тепловых труб

Особенности тепловой трубы

Принцип действия

Принцип действия тепловых труб состоит в том, что передача энергии происходит за счет испарения и дальнейшей конденсации жидкости. Чтобы понять, как это происходит на практике, надо представить замкнутую емкость, выполненную из металла с хорошей теплопроводностью и заполненную некоторым количеством воды.

Процессы передачи тепла выглядят в ней следующим образом:

  • При нагреве одной части емкости, вода в ней превратится в пар.
  • Покидая жидкость, водяные пары попадают на охлажденную поверхность, в результате чего пар вновь переходит в жидкое состояние и стекает на прежнее место. При этом большое количество тепловой энергии отводится через стенки металлического резервуара.
  • Остывшая вода опять нагревается и процесс повторяется.

Такая конструкция называется термосифоном. Она хоть и не является тепловой трубкой, однако, принцип работы тот же.

Обратите внимание! Термосифон может работать как положено только в том случае, если его зона конденсации расположена выше зоны испарения. Это обеспечивает возвращение конденсата на место нагрева.

Тепловая труба Гровера

Простейшая конструкция тепловой трубы выглядит следующим образом:

Корпус Обязательно должен быть выполнен из материала, который хорошо проводит тепло. Кроме того, важным требованием к корпусу является его прочность, чтобы он мог обеспечить надежную герметичность.В качестве материала для него обычно используют всевозможные сплавы различных металлов, а также керамику или стекло для труб. От типа корпуса может зависеть цена изделия.
Рабочая среда Представляет собой жидкое вещество (теплоноситель), способное при рабочей температуре переходить в газообразное состояние.
Фитиль Твердый материал с порами, сквозь которые жидкость по капиллярам перемещается из одной части трубы в другую.

Вышеописанное устройство называют тепловой трубой Гровера. Этот ученый в 1963 году усовершенствовал конструкцию термосифона, в которой жидкость стекала самотеком. В тепловой трубе Гровера жидкость перемещается капиллярным способом.

Конструкция тепловой трубки Гровера

Чтобы данная система функционировала, к рабочей жидкости выдвигаются следующие требования:

  • Точка перехода «жидкость-пар» должна находиться в диапазоне температур, в котором работает устройство.
  • Жидкость не должна подвергаться температурному разложению.
  • Материал фитиля и корпус трубы должны смачиваться жидкостью.

В качестве рабочих жидкостей могут применяться различные вещества в жидкой фазе:

  • Аммиак;
  • Сжиженный гелий;
  • Ацетон;
  • Вода;
  • Ртуть;
  • Серебро;
  • Натрий.

Что касается фитиля, то, как уже было сказано выше, данный элемент обеспечивает перемещение жидкости под действием капиллярных сил. Основное требование к этому материалу – обеспечение равномерного движения рабочей жидкости по капиллярам.

На фото – тепловая трубка Гровера в разрезе

Чаще всего в качестве фитиля применяют:

  • Металлические сетки;
  • Металлические войлоки;
  • Металлические стеки;
  • Ткани саржевого плетения и пр.

На первый взгляд может показаться, что данное устройство довольно простое, однако, его технический расчет могут выполнить только специалисты. Дело в том, что для эффективной его работы необходимо правильно подобрать материал, его рабочие характеристики и размеры. Поэтому выполнить тепловые трубки своими руками вряд ли получится, а вот тепловой сифон можно сделать и самостоятельно.

Передача тепловой энергии в таких устройствах может осуществляться несколькими способами:

  • При помощи открытого огня;
  • При непосредственном контакте с нагретым веществом;
  • Электрическим током;
  • Инфракрасным излучением.

Обратите внимание! Единственной величиной, лимитирующей тепловую мощность устройства, является тепловая стойкость его корпуса.

Надо сказать, что функции тепловых трубок Гровера довольно разнообразны, однако основной их задачей является передача тепловой энергии из одной части трубы в другую. Что касается температуры рабочей среды, то инструкция по их применению допускает диапазон от нуля градусов по Цельсию до тысяч градусов.

Схема устройства контурной трубы

Контурные тепловые трубки

С развитием технологий, тепловые трубы Гровера были усовершенствованы – на смену фитилю пришли специальные контурные трубки.

Достоинством такой конструкции является:

  • Надежность в работе;
  • Простота;
  • Более высокий уровень теплопередачи;
  • Хорошая адаптация к разным условиям эксплуатации;
  • Долговечность;
  • Рабочие характеристики сохраняются при любом пространственном положении, благодаря чему устанавливается такая тепловая труба своими руками без каких-либо сложностей.

По сути, контуры являются такими же капиллярами, но обладают большими размерами. В результате их качеств относительно передачи тепла, трубки являются сверхпроводниками тепловой энергии.

Тепловые трубки в системе охлаждения ПК

Инструменты для установки изоляции

Для того чтобы термоусадка выполнила свое назначение, ее предварительно необходимо нагреть больше +120С. Она размякнет и станет эластичной. При остывании она начнет уменьшаться в размерах, плотно облегая стык, к примеру, двух соединяемых проводов. Это на все сто процентов гарантированная изоляция.

Значит, основной инструмент в этом процессе будет любой прибор, который нагреет изоляционный материал. Если разговор идет о профессиональных инструментах, то их несколько:

  • газовая горелка (пропан-бутан), главное, чтобы пламя огня было желтого цвета;
  • специальные пистолеты теплового действия;
  • строительные фены (в их комплект входит несколько насадок, с помощью которых можно регулировать мощность теплового потока).

Если разговор идет о домашнем проведении процесса изоляции, да к тому же своими руками, то можно воспользоваться спичками, зажигалкой, можно опустить термоусадочную трубку в кипяток. Здесь важно не перегреть материал, чтобы он не сгорел и не стал хрупким.

Читайте также:
Узкий коридор: 8 эффективных приемов увеличить пространство

Область применения современных тепловых труб

Сфера применения тепловых труб довольно обширна:

  • Передача тепла с минимальными затратами различным объектам и зданиям.
  • На основе тепловых трубок выполнены многие системы охлаждения, в том числе и холодильники.
  • Отвод тепла в различных устройствах микроэлектроники, в частности, тепловые трубы зачастую применяются в ПК.
  • Медицина.
  • Космическая промышленность.
  • Комплектация термостатов и прочих аналогичных по назначению устройств.
  • Строительство в условиях вечной мерзлоты.
  • В сельском хозяйстве, при обеспечении теплом парников и т.д.
  • Данное устройство является обязательной деталью тепловых выключателей и диодов.
  • Также может использоваться тепловая труба для отопления жилых и производственных помещений.

Применение тепловых трубок в энергетике

Надо сказать, что характеристики современных тепловых труб довольно впечатляющие:

Диапазон температур работы От 4 до 2300 К
Мощность теплопередачи До 20 кВт на квадратный сантиметр
Ресурс работы Более 20 тысяч часов.

Вот, пожалуй, все основные моменты, которые можно вкратце рассказать о тепловых трубах. (См. также статью Разводка труб отопления: особенности.)

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Контурная тепловая труба, содержащая соединенные паро- и конденсатопроводом конденсатор и испаритель, снабженный капиллярно-пористой насадкой с пароотводными и питающими каналами, компенсационную полость, сообщающуюся с конденсатопроводом, и вспомогательную капиллярную структуру, расположенную внутри питающих каналов и компенсационной полости и соединяющую питающие каналы с компенсационной полостью, отличающаяся тем, что испаритель контурной тепловой трубы выполнен в виде нескольких расположенных рядом цилиндрических корпусов с установленными внутри них капиллярно-пористыми насадками со сквозными питающими каналами, при этом компенсационная полость разделена на две части, сообщающиеся друг с другом через питающие каналы и расположенные с противоположных торцов капиллярно-пористых насадок, а пароотводные каналы выводят пар от каждой капиллярно-пористой насадки в общий паропровод.

2. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса встроены в общий контактный фланец из теплопроводного материала.

3. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса снаружи снабжены ребрами из теплопроводного материала.

4. Контурная тепловая труба по п.1, отличающаяся тем, что цилиндрические корпуса расположены рядами в шахматном порядке.

Трубы в тепловых сетях

Общие сведения о трубах

Однако под тепловыми трубами зачастую понимают не только устройства для теплопередачи, но и трубы, которые используются в тепловых системах. Ниже мы расскажем о разновидностях этих труб, а также – об особенностях их применения.

Трубы для тепловых сетей могут быть изготовлены из самых разных материалов.

К наиболее распространенным тепловым трубам относятся:

  • Напорные трубы из асбестоцемента
  • Биметаллические трубы
  • Оцинкованные трубы из углеродистой стали
  • Трубы из углеродистой стали с эмалевым или стеклокерамическим покрытием.

От используемого материала зависят не только потери тепла трубами при транспортировке теплоносителя, но и долговечность самой отопительной системы.

Вот почему к выбору материала для труб теплосети нужно подходить крайне ответственно.

Ниже мы рассмотрим все вышеперечисленные разновидности труб, и проанализируем их достоинства и недостатки.

Напорные трубы из асбестоцемента

Достаточно популярные сегодня отопительные трубы из асбестоцемента обладают рядом преимуществ, которые позволяют им «выигрывать» у труб из других материалов.

Напорная труба из асбестоцемента

Среди преимуществ асбестоцементных тепловых труб:

  • Выдерживают температуру теплоносителя (чаще всего горячей воды) до 120 – 1300 С
  • Устойчивы к коррозии под воздействием почвенных растворов или других факторов
  • Асбест, входящий в состав таких труб, играет роль внутренней армировки, потому трубы из асбестоцементой смеси хорошо выдерживают сдавливающие деформации
  • Теплопроводность труб из асбестоцемента при температуре теплоносителя в 120 градусов меньше, чем теплопроводность аналогичной стальной трубы в аналогичных условиях в 62,5 раза. Потому можно смело заявлять, что по отношению к асбестоцементу такое определение как теплые трубы – отнюдь не гипербола.

Кроме того, асбестоцементовые трубы достаточно просты в монтаже и неприхотливы в обслуживании. Также они мало склонны к промерзанию даже в случае, если теплоноситель в них не циркулирует, потому теплый кабель для труб в данном случае практически никогда не требуется.

Тепловые биметаллические трубы

Трубы отопительные биметаллические производятся из высококачественной листовой стали, а поверхность таких труб покрывается защитным спецсоставом. Толщина защитного покрытия составляет от 5 до 20% от толщины стенки трубы.

Главной особенностью таких труб является тот факт, что они производятся горячекатаным методом – при этом не возникает необходимости термического воздействия на трубу, что положительно сказывается на ее антикоррозионных свойствах.

Оребренные биметаллические трубы

Биметаллические трубы для отопительных систем достаточно эффективны с точки зрения минимизации финансовых затрат, так как их срок службы гораздо больше, чем срок службы стальных труб.

И все же биметаллические трубы для теплотрассы используются достаточно редко ввиду их высокой стоимости.

Оцинкованные стальные трубы

При работе с теплоносителем, температура которого не выше 60-70 градусов Цельсия хорошую эффективность также демонстрируют трубы из высокоуглеродистой стали с цинковыми добавками.

Однако цинковое покрытие не универсально – при работе с теплоносителем, pH которого находится в пределах 6-7, оцинкованные трубы стремительно разрушаются. Также на устойчивость покрытия влияет скорость движения теплоносителя и уровень теплоносителя в трубе.

Труба в оцинкованной оболочке

Наравне с цинком для продления срока службы тепловых труб используют также легирующие добавки. В качестве таких добавок эффективны никель или алюминий. К другим процедурам, способным существенно повысить коррозионную устойчивость труб, относятся пассивирование, лакировка и фосфатирование внутренних поверхностей.

Что же касается экономичности использования таких труб, то она достаточно невысока. Объясняется это тем, что значительный коэффициент теплопередачи трубы из стали является причиной быстрого остывания теплоносителя.

Стальные трубы с эмалевым покрытием

Еще одна разновидность тепловых труб — стальные углеродистые трубы с эмалевыми покрытиями (также есть модификации со стеклоэмалевым покрытием).

Такие трубы отличаются следующими преимуществами:

  • Гладкая, твердая и долговечная внутренняя поверхность трубы
  • Высокая коррозионная устойчивость к воздействию теплоносителей различного состава
  • Высокая термостойкость
  • Длительный срок службы покрытия, а следовательно – и самих труб

Еще одним преимуществом труб с эмалевым покрытием является их относительно невысокая стоимость.

Как видите, под термином тепловые трубы могут скрываться кА достаточно сложные теплотехнические агрегаты, так и достаточно простые трубные конструкции для отопительных систем. И все же информация об этих устройствах должна быть у всех, кто планирует заниматься созданием отопительных систем.

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен

Процесс установки термоусадки своими руками

Итак, будем теперь отвечать на вопрос, как пользоваться термоусадочной трубкой? В первую очередь подготавливаются элементы, которые подлежат изоляции. Пусть это будут два конца электрического провода.

  1. Их необходимо очистить от пластиковой оболочки.
  2. С помощью растворителя обезжирить провода, используя тряпочку.
  3. Если внутренняя изоляция кабеля сделана из поливинилхлорида, то ее необходимо удалить наждачной бумагой мелкой зернистости.
  4. Если изоляция – это полиэтилен, то его можно удалить пламенем от зажигалки.

Процесс усадки

Так как мы обговариваем процесс изоляции соединения концов двух проводов, то сначала трубка термоусадочная надевается на один из проводов, производится скрутка двух концов, затем изоляционное изделие смешается на сам стык. Все остальное по нижеследующей схеме:

  1. Если используется, к примеру, для нагрева специальный пистолет, то нужно установить на нем температурный режим в диапазоне 120-200С. Если вами используется трубка, китайского производства, то специалисты рекомендуют снизить температурный режим до 70-110С.
  2. Начинать нагрев, а соответственно усадку, надо с середины стыка. Прогревания нужно обязательно проводить по кругу равномерно, так чтобы центральная часть изделия плотно прижалась к металлическому стыку двух проводов.
  3. Далее, производится попеременно нагрев двух концевых частей трубки, начиная от середины, двигаясь к концу.
  4. Оставляется стык для охлаждения.

Важно! Нельзя допускать перегрева местного значения, вот почему так важно нагревать изоляцию равномерно. После остывания поверхность термоусадочной трубки должна быть гладкой.

Некоторые модели изнутри покрываются клеевым составом. Так вот в процессе нагрева клей будет обязательно выходить наружу, это не снизит качество изоляции.

Читайте также:
Эргономика ванной комнаты : описание и особености, фото

Тепловые трубы: особенности устройства

Тепловые трубы представляют собой теплопередающие устройства, главной особенностью которых является способность передавать большие тепловые мощности при малых перепадах (градиентах) температуры. Устройства такого типа широко используются в теплоэнергетике, химической промышленности, электронике, а также в других областях промышленности.

В данном материале мы постараемся максимально доступно осветить принцип действия тепловых труб, а также рассказать о сфере их применения.

Стеклянный корпус тепловой трубы

Конструкция и функции тепловых труб

Термосифон как предшественник тепловой трубы

Устройством, которое являлось своеобразным «предшественником» тепловых труб современного типа является так называемый термосифон. Его конструкция, хоть и имеет значительные отличия от конструкции тепловых труб, все же базируется на тех же принципах.

Термосифон представляет собой специальную трубчатую емкость, внутрь которой вводится небольшое количество жидкости, после чего из емкости откачивается воздух и она герметизируется путем запайки.

Принцип работы термосифона следующий:

  • Тепло подводится к зоне испарения
  • Жидкость внутри капсулы термосифона превращается в пар, который под давлением движется в зону конденсации.
  • В зоне конденсации пар оседает на стенках, отдавая им тепло – следовательно, одним из условий, обеспечивающих работу термосифона, является эффективное отведение тепла от зоны конденсации пара.
    В противном случае возможен так называемый «кризис кипения», при котором вся жидкость испаряется и теплопередача проходит по стенкам термосифона, минуя зону конденсации.

Применение термосифонов обеспечивает значительную мощность теплопередачи даже том случае, если разница температур между концами термосифона незначительна.

Термосифон работает только тогда, когда его зона конденсации находится выше зоны испарения – только в этом случае возможно возвращение конденсата в зону испарения под действием силы тяжести.

Такая ситуация в ряде случаев является достаточно серьезны ограничением, поэтому на смену термосифонам пришли более сложные устройства — тепловые трубы.

Конструкция тепловой трубы

Наиболее распространенным типом тепловой трубы является тепловая труба Гровера (названная так по имени изобретателя).

Ее конструкция достаточно проста (насколько это возможно применительно к конструкции теплопередающего устройства) и включает в себя три основных элемента:

  • Корпус
  • Рабочую жидкость
  • Фитиль (капиллярно-пористый материал или КПМ)

Конструкция тепловой трубы

Ниже мы рассмотрим особенности конструкции каждого из этих элементов.

Корпус тепловой трубы чаще всего представляет собой камеру круглого или прямоугольного сечения. Для изготовления корпуса применяют нержавеющую сталь, сплавы алюминия, бронзу, медь, стекло, полимерные материалы либо керамику.

Главные функции корпуса – изоляция рабочей жидкости, а также — эффективное подведение и отведение тепла от нее. Для этого корпус должен быть герметичным и выдерживать значительное внутреннее давление.

Тепловые трубы производят с корпусами разных размеров, при этом ограничение в габаритах корпуса есть только «снижу» — они должны быть достаточными, чтобы исключить воздействие капиллярных сил в зоне движения пара.

Чтобы подобная ситуация не возникала, расчёт тепловой трубы, а также ее изготовление должны проводиться исключительно специалистами.

Рабочая жидкость в тепловой трубе является главным носителем тепла, который, собственно, и обеспечивает функционирование всей системы.

Исходя из этого к рабочей жидкости выдвигается ряд требований:

  • Она должна иметь точку перехода «жидкость-пар» в том диапазоне температур, в котором работает труба тепловая.
  • Рабочая жидкость не должна быть подвержена температурному разложению.
  • Она должна смачивать материал фитиля и корпуса тепловой трубы.

В качестве рабочих жидкостей в тепловых трубах применяют различные вещества в жидкой фазе: сжиженные гелий и аммиак, ацетон, воду, ртуть, а также – натрий или серебро.

Фитиль из пористого материала обеспечивает перемещение жидкости из зоны конденсации в зону испарения под действием капиллярных сил. Материал для фитиля должен обеспечивать равномерное движение жидкости по капиллярным порам.

В качестве фитиля используются металлические войлоки, металлические стеки или ткани саржевого типа плетения. Оптимальные материалы для фитиля тепловых труб – титан, медь, никель, нержавеющая сталь.

Отдельную категорию тепловых труб составляют так называемые контурные тепловые трубы. В отличие от классической схемы конструкции тепловой трубы у тепловой трубы контурного типа отсутствует фитиль, а передача рабочей жидкости от зоны испарения к зоне конденсации производится по контурным трубкам.

Схему контурной тепловой трубы вы можете видеть на рисунке.

Контурная схема тепловой трубы

Функции тепловых труб

Главной полезной функцией, которой обладают практически все трубы тепловые, является эффективная теплопередача по оси трубы между двумя зонами с разной температурой. Оптимальная работа тепловой трубы предусматривает, что режимы работы элементов не достигают критического порога.

Подача тепла к тепловой трубе может осуществляться любым удобным для вас способом:

  • Открытым пламенем
  • Электрическим током
  • Контактом с нагретым телом
  • Инфракрасным излучением

При этом единственной величиной, которой лимитируется тепловая мощность трубы, является тепловая стойкость корпуса.

Применение современных тепловых труб

Область применения тепловых труб сегодня достаточно широка.

Они могут использоваться в таких направлениях как:

  • Обустройство каналов эффективной теплопередачи
  • Разделение в пространстве источника нагрева и точки, в которую теплота передается (так называемый сток теплоты)
  • Комплектация термостатов и устройств, аналогичных по назначению
  • Терморегуляция и перенаправление тепловых потоков

Применение тепловых труб в энергетике

Кроме того, тепловые трубы являются обязательной деталью тепловых диодов и выключателей.

Характеристики тепловых труб на современном этапе достаточно впечатляющи:

  • Диапазон температур для работы тепловой трубы – от 4 до 2300 К.
  • Мощность теплопередачи – до 20 кВт на 1 см 2
  • Ресурс работы тепловой трубы составляет более 20 тыс. часов.

Трубы в тепловых сетях

Общие сведения о трубах

Однако под тепловыми трубами зачастую понимают не только устройства для теплопередачи, но и трубы, которые используются в тепловых системах. Ниже мы расскажем о разновидностях этих труб, а также – об особенностях их применения.

Трубы для тепловых сетей могут быть изготовлены из самых разных материалов.

К наиболее распространенным тепловым трубам относятся:

  • Напорные трубы из асбестоцемента
  • Биметаллические трубы
  • Оцинкованные трубы из углеродистой стали
  • Трубы из углеродистой стали с эмалевым или стеклокерамическим покрытием.
Читайте также:
Трубные тиски: обзор моделей для труб, цепных и пневматических для зажима, а также настольных и слесарных вариантов. Как выбрать?

От используемого материала зависят не только потери тепла трубами при транспортировке теплоносителя, но и долговечность самой отопительной системы.

Вот почему к выбору материала для труб теплосети нужно подходить крайне ответственно.

Ниже мы рассмотрим все вышеперечисленные разновидности труб, и проанализируем их достоинства и недостатки.

Напорные трубы из асбестоцемента

Достаточно популярные сегодня отопительные трубы из асбестоцемента обладают рядом преимуществ, которые позволяют им «выигрывать» у труб из других материалов.

Напорная труба из асбестоцемента

Среди преимуществ асбестоцементных тепловых труб:

  • Выдерживают температуру теплоносителя (чаще всего горячей воды) до 120 – 130 0 С
  • Устойчивы к коррозии под воздействием почвенных растворов или других факторов
  • Асбест, входящий в состав таких труб, играет роль внутренней армировки, потому трубы из асбестоцементой смеси хорошо выдерживают сдавливающие деформации
  • Теплопроводность труб из асбестоцемента при температуре теплоносителя в 120 градусов меньше, чем теплопроводность аналогичной стальной трубы в аналогичных условиях в 62,5 раза.
    Потому можно смело заявлять, что по отношению к асбестоцементу такое определение как теплые трубы – отнюдь не гипербола.

Кроме того, асбестоцементовые трубы достаточно просты в монтаже и неприхотливы в обслуживании. Также они мало склонны к промерзанию даже в случае, если теплоноситель в них не циркулирует, потому теплый кабель для труб в данном случае практически никогда не требуется.

Тепловые биметаллические трубы

Трубы отопительные биметаллические производятся из высококачественной листовой стали, а поверхность таких труб покрывается защитным спецсоставом. Толщина защитного покрытия составляет от 5 до 20% от толщины стенки трубы.

Главной особенностью таких труб является тот факт, что они производятся горячекатаным методом – при этом не возникает необходимости термического воздействия на трубу, что положительно сказывается на ее антикоррозионных свойствах.

Оребренные биметаллические трубы

Биметаллические трубы для отопительных систем достаточно эффективны с точки зрения минимизации финансовых затрат, так как их срок службы гораздо больше, чем срок службы стальных труб.

И все же биметаллические трубы для теплотрассы используются достаточно редко ввиду их высокой стоимости.

Оцинкованные стальные трубы

При работе с теплоносителем, температура которого не выше 60-70 градусов Цельсия хорошую эффективность также демонстрируют трубы из высокоуглеродистой стали с цинковыми добавками.

Однако цинковое покрытие не универсально – при работе с теплоносителем, pH которого находится в пределах 6-7, оцинкованные трубы стремительно разрушаются. Также на устойчивость покрытия влияет скорость движения теплоносителя и уровень теплоносителя в трубе.

Труба в оцинкованной оболочке

Наравне с цинком для продления срока службы тепловых труб используют также легирующие добавки. В качестве таких добавок эффективны никель или алюминий. К другим процедурам, способным существенно повысить коррозионную устойчивость труб, относятся пассивирование, лакировка и фосфатирование внутренних поверхностей.

Что же касается экономичности использования таких труб, то она достаточно невысока. Объясняется это тем, что значительный коэффициент теплопередачи трубы из стали является причиной быстрого остывания теплоносителя.

Стальные трубы с эмалевым покрытием

Еще одна разновидность тепловых труб — стальные углеродистые трубы с эмалевыми покрытиями (также есть модификации со стеклоэмалевым покрытием).

Такие трубы отличаются следующими преимуществами:

  • Гладкая, твердая и долговечная внутренняя поверхность трубы
  • Высокая коррозионная устойчивость к воздействию теплоносителей различного состава
  • Высокая термостойкость
  • Длительный срок службы покрытия, а следовательно – и самих труб

Еще одним преимуществом труб с эмалевым покрытием является их относительно невысокая стоимость.

Как видите, под термином тепловые трубы могут скрываться кА достаточно сложные теплотехнические агрегаты, так и достаточно простые трубные конструкции для отопительных систем. И все же информация об этих устройствах должна быть у всех, кто планирует заниматься созданием отопительных систем.

Принципиальная схема тепловой трубы

Итак, что же конкретно привлекает конструкторов в тепловых трубах? В первую очередь, это возможность передачи сотен ватт и даже киловатт — скрытая теплота испарения характеризуется очень солидными величинами (тысячами джоулей на грамм вещества). И если испарять массу жидкости порядка нескольких граммов в секунду, то с паром будет переноситься тепловой поток, оцениваемый киловаттами или десятком киловатт. Другая интересная особенность — это возможность концентрации тепловой энергии (системы тепловых труб могут работать в комплексе с большим количеством тепловых источников и гибко конфигурироваться под различные задачи). А в компьютерной области применения тепловых труб актуальной становится возможность развить большую площадь теплоотдающей поверхности далеко за пределами теплонагруженной области.

К слову, тепловые трубы, при всей своей новизне для компьютерного сектора, в других областях народного хозяйства зарекомендовали себя уже давно и очень хорошо. Так, например, современные космические аппараты связи проектируются на основе специальных несущих панельных конструкций, которые буквально на каждом сантиметре пронизаны тепловыми трубами. Очень широкое применение тепловые трубы получили также и в различных приборах и системах электронной и медицинской техники, в энергетике и химической отрасли.

Конструктивные особенности и характеристики тепловых труб

В зависимости от поставленной задачи, тепловые трубы могут иметь различные конфигурации и внешние оребрения.

Конструкции тепловых труб

Пользователям ПК наиболее знакомы тепловые микротрубы (диаметр ТТ до 6 мм) которые широко используются в известных кулерах китайских производителей. Такие ТТ пусть и обладают весьма слабыми тепловыми характеристиками, работая на мощностях порядка 100 Вт практически на пределе, однако, по габаритам полностью отвечают требованиям современной компьютерной техники. Эти микротрубы — классический, если можно так сказать, вариант конструкций тепловых труб.

Другой вариант — если конденсат возвращается в зону испарения только за счет массовых сил, тогда мы имеем конструкцию тепловой трубы, называемую термосифоном (ТС). В такой конструкции ТТ, при определенных условиях, не обязательно иметь капиллярную структуру внутри корпуса.

Вполне реально наблюдать работу термосифона и связанные с этим процессы в обычных домашних условиях. Для этого достаточно поставить на плиту прозрачную стеклянную кастрюлю. В таких условиях хорошо видно как жидкость испаряется (либо кипит), пар поднимается вверх и конденсируется — образуются капельки жидкости на внутренней части крышки кастрюли. Далее, под воздействием силы тяжести капельки падают, либо стекают по стенкам обратно вниз. В итоге, такой процесс точно соответствует физическим механизмам в ТС. Если бы кастрюля имела на стенках капиллярную структуру (например, что-то типа фитиля керосиновой лампы), то жидкость возвращалась бы вниз уже по КС. И если бы мы перевернули плиту с кастрюлей “с ног наголову”, то вода в кастрюле при определенных условиях все равно закипала бы уже на ее “верхней” части, то есть, на дне кастрюли. Пар конденсировался бы внизу, и образовавшаяся жидкость снова поднималась бы по КС вверх, где опять испарялась.

Термосифон: 1 — корпус; 2 — капиллярная структура; 3 — пар; 4 — объем с кипящей жидкостью.

Контурная тепловая труба, принципиальная схема: 1 — испаритель; 2 — капиллярный насос (КН); 3 — конденсатор; 4 — компенсационная полость (КП); 5 — паровой канал; 6 — жидкостный канал.

Тепловые трубы такой конфигурации имеют следующие преимущества:

Читайте также:
Сруб бани из ольхи - характеристика породы древесины

возможность работы, как в условиях микрогравитации, так и в поле сил тяжести при любой ориентации (превышение зоны испарения над зоной конденсации более 1 м), а также против сил ускорения

передача значительных тепловых потоков (1000 Вт и выше)

создание гибкой развязки между испарителем и конденсатором

обеспечение диодности, что позволяет передавать тепло только в одном направлении

передача тепла на значительные расстояния (6 м и более)

Разработки подобных конструкций ТТ, особенно адаптированных для ноутбуков, ведутся как в России, так и за рубежом. Несмотря на наличие большого числа опытных образцов КТТ (а также специализированных кулеров на их основе), на данный момент остаются преграды на пути их внедрения в серийное производство. Это касается как миниатюризации их корпусов и совершенствования технологичности, вкупе с обеспечением надежной стабильной работы, так и улучшения тепловых характеристик, в том числе минимизации термического сопротивления.

Между тем, сколько бы мы ни говорили о тепловых трубах и многообразии их конфигураций, основной задачей этих устройств является создание эффективной теплообменной поверхности в зоне отвода тепла с конденсационной части ТТ. Ведь тепловая труба фактически осуществляет только перенос тепла из одной области пространства в другую. Сама по себе она не охлаждает, а лишь выполняет теплопередающие функции. И здесь особое значение приобретают специальные теплосбрасывающие конструкции, монтируемые на ТТ — системы эффективных теплоотводящих поверхностей.

Новые конструкции эффективных теплоотводящих поверхностей (радиаторов)

Величина среднего перегрева (по отношению к окружающей среде) любого из теплонагруженных элементов ПК (процессор, видеокарта и т.д.) прямо влияет на надежность его функционирования, и одним из существенных факторов, определяющих перегрев, является тепловое сопротивление радиатора. Последний представляет собой, как правило, оребренную теплоотдающую (теплосбрасывающую) поверхность с высокоразвитой площадью теплоотдачи. В свою очередь, на внешнее термическое сопротивление радиатора влияют в основном два параметра: коэффициент теплоотдачи и площадь оребренной теплоотдающей поверхности.

Коэффициент теплоотдачи зависит от множества факторов, в том числе от способа передачи теплоты, скорости движения теплоносителя, его теплофизических свойств, разности средней температуры поверхности конструкции элемента и теплоносителя (избыточная температура) и т.д. Так, в условиях естественной конвекции и радиации (передачи теплоты излучением) при избыточной температуре 10 К коэффициент теплоотдачи лежит в диапазоне 2–40 Вт/мІК, а максимально возможная поверхностная плотность теплового потока, сбрасываемая радиатором, составляет 0,4 Вт/смІ.

В случае принудительной конвекции воздуха, когда в системах охлаждения применяется вентилятор или другой нагнетатель (наиболее распространенный вариант конструкции кулеров), при величинах скорости теплоносителя до 2–3 м/с и той же избыточной температуре 10°С, коэффициент теплоотдачи находится уже в пределах 20– 100 Вт/м 2К, а максимально отводимая радиатором плотность теплового потока равна 1 Вт/см 2. При изменении агрегатного состояния теплоносителя — кипении или испарении хладагентов, коэффициенты теплоотдачи и отводимые тепловые потоки возрастают на порядки (для процесса кипения коэффициент теплоотдачи изменяется в диапазоне (5–10)*10 3 Вт/м 2К, а плотности тепловых потоков лежат в диапазоне 10–20 Вт/см 2).

Итак, зависимость термического сопротивления радиатора от коэффициента теплоотдачи достаточно проста — чем выше коэффициент, тем ниже тепловое сопротивление и, соответственно, выше эффективность радиатора. Аналогичная ситуация имеет место и в отношении теплосбрасывающей поверхности (которая определяется геометрическими параметрами оребрения) — чем больше площадь этой поверхности, тем ниже тепловое сопротивление радиатора.

В итоге, разработчики новых конструкций радиаторов должны стремиться к одновременному увеличению, как коэффициента теплоотдачи, так и площади поверхности теплообмена, что позволит эффективно минимизировать внешнее термическое сопротивление радиатора в целом. Однако если действовать в лоб, такой подход может породить цепь взаимоисключающих требований. Так, излишнее увеличение площади поверхности теплообмена автоматически приводит к резкому увеличению габаритов, массы радиатора, что сопровождается повышением гидродинамических потерь вместе с увеличением теплового сопротивления. И наоборот, стремление к чрезмерной компактности оребрения обязательно уменьшит коэффициенты теплоотдачи, и соответственно вновь увеличит тепловое сопротивление.

Из сказанного ясно, что в процессе поиска новых конструктивных решений радиаторов необходимо придерживаться золотой середины, чтобы действительно интенсифицировать теплообмен, уменьшить потери энергии при эксплуатации радиатора и добиться его наибольшей тепловой эффективности. Как показывает многолетний опыт, при разработке эффективных радиаторов наиболее плодотворными оказались следующие идеи: первая — это создание благоприятных гидродинамических условий движения теплоносителя, позволяющих обеспечить опережающий рост коэффициентов теплоотдачи по сравнению с гидравлическим сопротивлением. Вторая идея заключается в применении развитых теплоотдающих поверхностей при малых значениях эквивалентных размеров оребрения, что позволяет резко увеличить компактность радиатора без увеличения теплового сопротивления.

Для реализации первой идеи, обычно прибегают к турбулизации потока вблизи поверхности теплообмена. Этого достигают применением ребер специальной конструкции совместно с различными турбулизирующими элементами. Использование таких поверхностей позволяет создавать отрывные зоны, турбулизировать поток, уменьшать толщину пограничного слоя и, благодаря этому усиливать интенсивность теплообмена. При этом следует исходить из того, что важна не турбулизация вообще, а турбулизация именно в том месте сечения оребрения, где возникает наибольший градиент температуры (как правило, это область вблизи поверхности теплообмена — область ламинарного подслоя). Турбулизация же ядра потока может привести лишь к существенному росту гидродинамических потерь при незначительном увеличении теплоотдачи.

Реализация идеи высокой компактности радиатора обычно состоит в проектировании достаточно развитой площади оребрения в заданных габаритах (объеме) за счет применения ребер специализированных конструкций, вариации различных геометрических размеров и различной компоновки оребрения.

В целях создания высокоэффективных радиаторов разработчики стараются использовать эти две главных идеи одновременно, то есть конструируют компактную теплоотдающую поверхность с развитыми площадями оребрения и обеспечивают соответствующую форму межреберных каналов, необходимую для эффективной турбулизации потока, приведены опытные образцы новых медных радиаторов с сетчато-проволочным и гофрированным оребрениями (теплоотводящие ребра закреплены на плоских и цилиндрических основаниях с различными габаритными размерами). По сравнению с традиционными радиаторами, имеющими пластинчатые ребра, тепловая эффективность сетчато-проволочного оребрения увеличивается на 20–40% при умеренном росте динамических потерь (на скорости обдува 2–3 м/с), а масса таких радиаторов меньше в 1,5 — 1,8 раза. При равных затратах меди на изготовление радиаторов с гладкими и гофрированными ребрами и одинаковых мощностях вентиляторов на прокачку теплоносителя, гофрировка также позволяет увеличить отводимые тепловые потоки (на 40–60%), однако сопротивление потоку возрастает уже более существенно (в 1,9 раза).

Как самому сделать печь на отработанном масле

С каждым годом отработанное масло становится все менее выгодным энергоносителем. Судите сами: сжигая топливо по цене 13 р. (0.20 у. е.) за 1 литр, вы ежемесячно потратите на обогрев 100 м² около 7 тыс. рублей (110 у. е.). Но в гаражах и небольших дачных домиках с периодическим отоплением самодельные масляные печки востребованы по сей день. Наша цель – пояснить доступным языком, как сделать печь на отработке своими руками из газового баллона или стальной трубы. Для ясности предоставим чертежи разных конструкций – капельницы с наддувом и простой масляной буржуйки.

  • 1 Виды самодельных печек на отработке
    • 1.1 Устройство и недостатки буржуйки открытого типа
    • 1.2 Плюсы и минусы капельницы
  • 2 Как сварить простую печь
  • 3 Делаем капельный отопитель
  • 4 Выводы и рекомендации по отбору тепла
Читайте также:
Сушеные яблоки рецепт в духовке

Виды самодельных печек на отработке

Машинное масло, загрязненное примесями, само не воспламеняется. Поэтому принцип работы любой масляной буржуйки основан на термическом разложении топлива – пиролизе. Проще говоря, для получения теплоты отработку нужно нагреть, испарить и сжечь в топке печи, подавая воздух с избытком. Существует 3 вида устройств, где данный принцип реализован различными способами:

  1. Простая и самая популярная конструкция прямого горения с дожиганием масляных паров в перфорированной трубе открытого типа (так называемая чудо-печка).
  2. Капельная печь на отработанном масле с закрытым дожигателем;
  3. Горелка Бабингтона. О том, как она работает и как ее сделать самостоятельно, подробно описывается в другой нашей публикации.

Примечание. Серьезные мастера, собаку съевшие в вопросах использования жидкого топлива, навострились делать в единичных экземплярах факельные горелки по заводским образцам. Но в силу сложности исполнения подобные конструкции недоступны широкому кругу домашних и гаражных умельцев, поэтому здесь рассматриваться не будут.

Эффективность отопительных буржуек невысока и составляет максимум 70%. Заметим, что указанные в начале статьи затраты на обогрев рассчитаны по показателям заводских теплогенераторов с КПД 85% (для ознакомления с полной картиной и сравнения масла с дровами вы можете перейти сюда). Соответственно, расход горючего в самодельных отопителях значительно выше – от 0.8 до 1.5 литра в час против 0.7 л у дизельных котлов на 100 м² площади. Учитывайте данный факт, принимаясь за изготовление печи на отработке.

Устройство и недостатки буржуйки открытого типа

Изображенная на фото пиролизная печка представляет собой цилиндрическую или квадратную емкость, на четверть заполняемую отработавшим маслом либо соляркой и снабженную воздушной заслонкой. Сверху приварена труба с отверстиями, сквозь которые за счет дымоходной тяги всасывается вторичный воздух. Еще выше стоит камера дожигания с перегородкой для отбора теплоты продуктов горения.

Справка. Верхнюю камеру буржуйки делать необязательно. Существует более эффективное решение по отбору тепла – изготовить дожигатель с поворотом на 90° и направить его в наклонный дымоход, теплообменник–экономайзер или внутрь обычной дровяной буржуйки.

Принцип действия таков: топливо нужно разжечь с применением легковоспламеняющейся жидкости, после чего начнется испарение отработки и ее первичное горение, вызывающее пиролиз. Горючие газы, попадая в перфорированную трубу, вспыхивают от контакта с кислородным потоком и сжигаются окончательно. Интенсивность пламени в топливнике регулируется воздушной заслонкой.

Данная печка на отработке имеет лишь два преимущества: простота с дешевизной да независимость от электричества. В остальном – сплошные минусы:

  • для работы необходима стабильная естественная тяга, без нее агрегат начинает дымить в помещение и затухать;
  • вода либо антифриз, попавшие в масло, вызывают мини-взрывы в топливнике, отчего из дожигателя во все стороны брызгают огненные капли и хозяину приходится тушить пожар;
  • высокий расход горючего – до 2 л/час при слабой теплоотдаче (львиная доля энергии улетает в трубу);
  • неразъемный корпус тяжело чистить от сажи.

Хотя внешне буржуйки отличаются, но действуют по одному принципу, на правом фото пары топлива догорают внутри дровяной печки

Часть этих недостатков можно нивелировать с помощью удачных технических решений, о чем будет сказано далее. В процессе эксплуатации следует придерживаться правил противопожарной безопасности и подготавливать отработанное масло – отстаивать и фильтровать.

Плюсы и минусы капельницы

Кардинальное отличие этой печи заключается в следующем:

  • перфорированная труба помещена внутрь стального корпуса из газового баллона или трубы;
  • топливо поступает в зону сжигания в виде капель, падающих на дно чаши, размещенной под дожигателем;
  • для повышения эффективности агрегат оснащается наддувом воздуха с помощью вентилятора, как показано на схеме.

Схема капельницы с нижней подачей горючего из топливного бака самотеком

Примечание. Буржуйка способна работать и от естественной тяги дымохода, но тогда диаметр и число отверстий в дожигателе необходимо увеличить.

Реальный недостаток капельной печки – сложность исполнения для новичка. Дело в том, что целиком полагаться на чужие чертежи и расчеты нельзя, отопитель нужно изготовить и настроить под свои условия эксплуатации и правильно организовать топливоподачу. То есть, потребуются неоднократные доработки.

Пламя накаляет корпус отопительного агрегата в одной зоне вокруг горелки

Второй негативный момент характерен для печек с наддувом. В них струя пламени постоянно бьет в одно место корпуса, отчего последний довольно быстро прогорит, если не сделать его из толстого металла или нержавейки. Зато перечисленные минусы с лихвой перекрываются достоинствами:

  1. Агрегат безопасен в эксплуатации, поскольку зона горения полностью закрыта железным корпусом.
  2. Приемлемый расход отработанного масла. На практике хорошо настроенная буржуйка с водяным контуром сжигает до 1.5 литра за 1 час для отопления 100 м² площади.
  3. Есть возможность обернуть корпус водяной рубашкой и переделать печь на отработке в котел.
  4. Топливоподача и мощность агрегата поддается регулировке.
  5. Нетребовательность к высоте дымохода и удобство очистки.

Котел с наддувом воздуха, сжигающий отработавшее машинное масло и солярку

Лирическое отступление. Поскольку турбированные масляные отопители работают практически бездымно, то сажа в небольших количествах накапливается только в чаше. Толковый мастер предусмотрит, чтобы она с легкостью вынималась.

Как сварить простую печь

Нет смысла пояснять, как сделать стандартную и самую распространенную конструкцию, изображенную ниже на сборочном чертеже. Во-первых, схема очень понятная, а во-вторых, в информации подобного рода нет недостатка.

Перейдем к более сложному варианту обогревателя с дожигателем, согнутым под 90° (угол поворота можно делать и больше, но не острее). Цель мероприятия проста – организовать отбор тепла у раскаленных дымовых газов, а не сразу выбрасывать их на улицу. Второе отличие – выдвижной ящик с маслом вместо традиционной закрытой емкости, которую неудобно чистить. Конструкция печи с размерами показана на чертеже.

Размеры агрегата произвольные и могут меняться при подборе труб другого сечения

Совет. Размеры труб для топливника и корпуса выбирайте в зависимости от объема обогреваемого помещения. Для обычного гаража 6 х 3 м подойдет профильная труба 80 х 80 х 4 мм, на топливный ящик возьмите размер 60 х 60х 4 мм. Сгодится и круглый металлопрокат, но с ним работать сложнее.

Пошаговая инструкция сборки печи для сжигания отработки выглядит так:

  1. Нарежьте заготовки для корпуса, выдвижного ящика и дожигателя. Для последнего трубы нужно резать под углом 45°.
  2. В профиле меньшего сечения выпилите болгаркой одну стенку, а по бокам приварите заглушки, чтобы получилась открытая емкость. К передней части, выступающей за борта ящика, приделайте ручку.
  3. Сварите конструкцию, как показано на чертеже, просверлите воздушное отверстие сверху топливной камеры и выполните перфорацию вашей изогнутой трубы. Отопитель готов.

Здесь мастер для лучшей теплоотдачи приделал конвекционные ребра из стальной полосы 40 мм

Несколько слов о том, как подобрать количество и диаметр отверстий дожигателя. В нашем примере его сечение составляет 80 х 80 = 6400 мм², для расчета нужно взять половину – 3200 мм². Если применить сверло 8 мм, то площадь каждого отверстия составит 50 мм². Делим 3200 на 50 и получаем 64 шт., которые надо просверлить в процессе сборки, при настройке их число вырастет.

Важный момент. Перед запуском отопительного агрегата убедитесь, что общая высота дымохода (считается от масляной камеры до среза трубы на улице) составляет не менее 5 м, в противном случае нарастите его до нужной отметки.

Один из простых способов отбора тепла – подключение печки к горизонтальной трубе длиной 3—4 м, идущей под уклоном вдоль стены помещения. Проследите, чтобы над ней и отопителем не стояли деревянные полки или канистры с горючим. Стены около печки лучше оградить листовым железом.

Читайте также:
Трубные тиски: обзор моделей для труб, цепных и пневматических для зажима, а также настольных и слесарных вариантов. Как выбрать?

Теперь остается выполнить розжиг, прогрев и настройку печи. Ваша задача – добиться минимальных выбросов черного дыма на улицу, свидетельствующих о недостатке воздуха для горения. Нужно сверлить по 3—5 дополнительных отверстий в дожигателе и снова проверять работу агрегата, пока выброс не станет максимально прозрачным.

Совет. Не перестарайтесь и не наделайте много сверлений, из-за чего буржуйка станет дымить в помещение. Очень развернуто об изготовлении, настройке и обслуживании рассказывается в видео:

Делаем капельный отопитель

Чаще всего для сборки капельниц мастера-умельцы используют старые кислородные и пропановые баллоны с диаметром 220 и 300 мм соответственно. Первые предпочтительнее из-за мощных толстых стенок, способных долго служить и не прогореть. Также подойдет труба из низкоуглеродистой стали (Ст 3—10) с толщиной стенок от 5 мм.

Совет. Идеальный вариант долговечного корпуса – труба из жаропрочной нержавеющей стали, легированной хромом, молибденом или никелем (например, 15Х1МФ либо 12X18H12T) со стенкой не больше 3 мм. Возможно, такая найдется у вас или у соседа в гараже. Специально покупать ее не нужно – обойдется слишком дорого.

Металлопрокат для остальных деталей подбирайте по чертежу печи с верхней подачей отработки в зону горения. Вентилятор для нагнетания – «улитка» от салонного отопителя ВАЗ 2108 либо его китайский аналог, топливная магистраль – нержавеющая трубка диаметром 8—10 мм.

Технология изготовления такая:

  1. Сделайте пламенную чашу из обрезка трубы или возьмите готовую стальную емкость. Она должна выниматься через ревизионный люк, так что не делайте поддон слишком большим.
  2. Вырежьте в корпусе проемы для дымоходного патрубка и прочистного люка. В последнем сделайте обрамление и установите дверцу (можно с креплением на болтах).
  3. Изготовьте дожигатель. Не торопитесь сверлить все отверстия, указанные на чертеже, выполните сначала 2 нижних ряда. Остальные доделаете в процессе настройки печи.
  4. Приварите к дожигателю крышку и воздуховод с фланцем для монтажа вентилятора. Присоедините устройство топливоподачи, как это сделано на фото.
  5. Соберите отопительный агрегат и подсоедините его к дымоходу.

Совет. Для большей устойчивости к корпусу не помешает приварить раму из стального профиля или уголка по примеру, изображенному на фото.

Чтобы регулировать мощность нагрева, нужно предусмотреть управление оборотами вентилятора и устройство для дозирования топливоподачи (как правило, применяют автопоилку с разрывом струи). По отзывам мастеров на популярном форуме, где обсуждаются вопросы отопления отработкой, расход горючего в печи можно контролировать визуально. Тенденция такая: если в разрыве струи масло идет каплями, то сгорает меньше 1 литра в час, а когда течет тоненькая струйка – более 1 л/час.

Рекомендация. Управление производительностью вентилятора реализуйте с помощью дешевого китайского ШИМ – регулятора (цена вопроса – около 8 у. е.).

После розжига и прогрева отопителя необходимо настроить оптимальный режим работы. Процедура выполняется по той же схеме, что и с чудо-печкой: нужно добиться максимально прозрачного дыма из трубы путем сверления в дожигателе дополнительных отверстий. Идеальный цвет пламени – синий, нормальный – желтый, а красноватый — неудовлетворительный. В последнем случае наблюдается низкая теплоотдача, высокий расход и образование сажи. Подробности о конструкции и сборке печи смотрите в видеосюжете:

Выводы и рекомендации по отбору тепла

Главный вывод звучит так: если вы являетесь одновременно сварщиком и слесарем, то решите задачу по изготовлению масляной буржуйки без особых затруднений. Повозиться придется лишь с настройкой и организацией подачи отработки в капельнице.

Примечание. Автоматическое пополнение топливной емкости можно организовать и для печки открытого типа. Резервуар с отработанным маслом подключается к камере сгорания трубкой, чтобы они действовали по принципу сообщающихся сосудов.

Как вы поняли, просто сделать печь на солярке и отработке недостаточно, надо еще правильно отобрать у нее максимум тепла, не дать ему вылететь без пользы в дымоход. Практикуются следующие способы:

  1. Как уже говорилось выше, можно проложить дымоход под уклоном по всей длине помещения, а потом вывести его на улицу вертикально.
  2. Устроить обдув корпуса бытовым вентилятором.
  3. Обварить тело буржуйки дополнительными теплосъемными ребрами.
  4. Изготовить и поставить на дымоход экономайзер (в народе его называют регистром и бойлером) – теплообменник самоварного типа. Такие применяются в твердотопливных котлах и состоят из нескольких дымогарных труб, омываемых снаружи водой.

Простейший способ снять тепло с нагретого топливника – наварить конвекционные ребра

Важный момент. Обдувать корпус чудо-печки не рекомендуется по понятным причинам. Водяной контур, установленный на дымоход, нужно подключать к системе отопления с принудительной циркуляцией и расширительным баком открытого типа, чтобы уберечься от закипания. При периодической топке трубопроводы заполняются антифризом.

Схема подключения водяного экономайзера к радиаторному отоплению

Последний способ отбора тепла – для опытных мастеров. Превратите простую капельницу в котел на отработанном масле – установите на корпус водяную рубашку толщиной 3—4 см и утеплите снаружи, как об этом рассказывается в последнем видео:

Тепловая пушка своими руками: краткий разбор 3-х самых популярных конструкций

Необходимость быстро нагреть большое или малое помещение возникает не так уж редко. Иногда нужно протопить гараж, высушить цементную стену, прогреть погреб, сарай, садовый домик, дачу и т.п. В этом случае оптимальным выходом может стать тепловая пушка своими руками. Изготовить такой прибор не так уж сложно, при этом можно выбрать подходящий вид топлива: электричество, дизельное топливо, сжиженный газ в баллонах и т.п.

Сложно назвать более удобное и простое устройство для обогрева помещений, чем тепловая пушка. Она представляет собой мощный нагревательный элемент и вентилятор, заключенные в один корпус. Такое устройство нагревает воздух и быстро распространяет его по помещению. Для прогрева небольшой комнаты понадобятся считанные минуты, да и отопление крупного помещения займет не слишком много времени.

Корпус тепловой пушки необходимо с двух сторон закрыть решетками, которые будут свободно пропускать воздух. Это обязательный элемент всех промышленных моделей

Конструкция тепловой пушки очень простая, поэтому правильно изготовленное устройство практически никогда не ломается. Для работы прибора можно использовать различное топливо:

  • электричество;
  • сжиженный газ;
  • дизельное топливо;
  • керосин;
  • бензин и т.п.
Читайте также:
Технология изготовления гибкого камня своими руками

Эффективность работы тепловой пушки зависит от мощности прибора. Для бытового использования вполне подойдет устройство мощностью 2-10 кВт. Для больших помещений понадобится тепловая пушка мощностью 200-300 кВт.

Агрегат #1 — электрическая тепло-пушка

Электрическая тепловая пушка, пожалуй, самый простой и безопасный вариант нагревателя. Если на участке есть доступ к электричеству, следует сделать именно такой агрегат. Он пригодится как во время строительных работ, так и позднее, для различных хозяйственных нужд как в доме, так и на участке.

Материалы и инструменты

Для изготовления электрической тепловой пушки понадобится:

  • рама, на которую будет опираться конструкция;
  • металлический корпус;
  • нагревательный элемент (ТЭН);
  • вентилятор с электромотором;
  • выключатель или панель управления;
  • кабель для подключения прибора к электросети.

Корпус тепловой пушки можно изготовить из подходящего отрезка трубы или из листа оцинкованного железа. Для работы понадобится инструмент по металлу и, возможно, сварочный аппарат. Название “пушка” этот прибор получил из-за сходства его цилиндрического корпуса со старинным орудием. Однако корпус нагревателя может также иметь квадратное или прямоугольное сечение, если его проще изготовить.

Обратите внимание, что корпус изделия во время работы может нагреваться довольно сильно. Следует выбрать для корпуса жаростойкий или достаточно толстый металл. Кроме того, имеет смысл нанести на его металлические части теплоизоляционное покрытие.

Подбирая подходящий ТЭН и вентилятор, следует помнить, что температура прогрева зависит от мощности и количества нагревательных элементов. Скорость вращения вентилятора на количество тепла не влияет, но чем она выше, тем равномернее полученное тепло распространится по помещению. Таким образом, за температуру обогрева отвечает нагревательный элемент, а за качество — скорость вращения вентилятора.

Чтобы сократить расходы, ТЭН можно снять со старого утюга или другого бытового прибора. Иногда имеет смысл укоротить нагревательный элемент, чтобы увеличить температуру нагрева. Подходящий электродвигатель с крыльчаткой можно найти в старых моделях пылесосов.

Процесс сборки

Чтобы собрать электрическую тепловую пушку правильно, рекомендуется для начала составить схему электрической цепи устройства. Можно воспользоваться уже готовой схемой, один из вариантов представлен ниже:

Для правильного монтажа электрической тепловой пушки перед началом работ рекомендуется составить электрическую схему, отразив на ней подключение всех элементов к электросети

Собирать электрическую тепловую пушку следует в таком порядке:

  1. Подготовить корпус и опору.
  2. Установить ТЭН (или несколько ТЭНов) в центре корпуса.
  3. Подвести к ТЭНам питающий кабель.
  4. Установить вентилятор и подвести к нему электропитание
  5. Подвести провод питания, проводку от ТЭНов и вентилятора к управляющей панели.
  6. Поставить защитную решетку на передней и задней части корпуса.

В процессе сборки необходимо тщательно изолировать все электрические соединения. По окончании сборки делают пробный пуск устройства. Если оно работает без сбоев, можно использовать пушку по назначению.

Агрегат #2 — тепловая пушка на дизтопливе

Там, где доступ к электричеству ограничен или невозможен, нередко используют обогреватели на дизельном топливе. Такую тепловую пушку изготовить самотоятельно несколько сложнее, чем электрическую модель. Понадобится сделать два корпуса и поработать сварочным аппаратом.

Как работает такая конструкция?

Нижняя часть дизельной тепловой пушки — это бак для топлива. Сверху размещают само устройство, в котором соединены камера сгорания и вентилятор. Топливо подается в камеру сгорания, а вентилятор нагнетает горячий воздух в помещение. Для транспортировки и розжига топлива понадобится соединительная трубка, топливный насос, фильтр и форсунка. К вентилятору крепится электродвигатель.

Камера сгорания монтируется в центре верхнего корпуса тепловой пушки. Она представляет собой металлический цилиндр, диаметр которого должен быть примерно в два раза меньше, чем диаметр корпуса. Продукты сгорания дизтоплива выводятся из камеры через вертикальную трубу. Для прогрева помещения площадью около 600 кв. м может понадобиться до 10 литров топлива.

Процесс сборки

Нижний корпус должен находиться на расстоянии не менее 15 см от верхней части. Чтобы бак для горючего не перегревался, его следует изготовить из материала с низкой теплопроводностью. Можно использовать и обычный металлический бак, который придется укрыть слоем теплоизоляционного материала.

На схеме наглядно представлено устройство тепловой пушки, работающей на дизельном топливе. Устройство следует закрепить на прочной устойчивой раме

Верхний корпус нужно выполнить из толстого металла, это может быть подходящий отрезок широкой стальной трубы. В корпусе необходимо закрепить:

  • камеру сгорания с вертикальным отводом;
  • топливный насос с форсункой;
  • вентилятор с электродвигателем.

Затем устанавливают топливный насос, а из бака выводят металлическую трубу, через которую топливо подается сначала на топливный фильтр, а затем на форсунку в камере сгорания. С торцов верхний корпус закрывают защитными сетками. Об электропитании для вентилятора придется позаботиться отдельно. Если нет доступа к электрической сети, следует использовать аккумулятор.

При использовании дизельной тепловой пушки важно придерживаться правил техники безопасности. Даже на расстоянии метра от корпуса направленный поток горячего воздуха может достигать 300 градусов. Не рекомендуется использовать это устройство в закрытых помещениях, поскольку продукты сгорания дизельного топлива могут представлять опасность для здоровья людей.

Помимо агрегата, работающего на дизельном топливе, для тепловых пушек применяют и другие виды жидких горючих материалов, например, отработанное машинное масло. Интересный вариант такого устройства на “отработке” представлен в следующем видеоматериале:

Агрегат #3 — газовая тепловая пушка

Конструкция газовой тепловой пушки во многом похожа на устройство дизельного агрегата. Здесь также имеется камера сгорания, встроенная в корпус. Вместо бака с жидким горючим используется баллон сжиженного газа.

Как и при использовании дизельного топлива, большое значение имеет отвод продуктов сгорания, поскольку в самодельных устройствах невозможно обеспечить полное сгорание газа. Воздух, который поступает в помещение, нагревается при контакте с камерой сгорания. Отработанные газы покидают устройство через выведенный на улицу отвод. Такая система непрямого нагрева более безопасна, чем обогрев открытым пламенем.

Тепловые пушки непрямого нагрева снабжены закрытой камерой сгорания, которая препятствует контакту открытого огня и воздуха — такая конструкция сложнее, но безопаснее, чем модели прямого нагрева

Чтобы увеличить теплоотдачу, к корпусу камеры сгорания можно приварить продольные пластины, обычно их делают 4-8 штук. При этом размеры камеры сгорания с дополнительными пластинами должны быть меньше диаметра корпуса, чтобы камера не касалась его стенок и не перегревала корпус тепловой пушки.

Корпус газовой тепловой пушки во время работы сильно разогревается, поэтому его необходимо закрыть слоем теплоизоляции, чтобы избежать возможных ожогов или возгорания.

Для создания газовой тепловой пушки понадобятся следующие элементы:

  • баллон со сжиженным газом;
  • горелка;
  • редуктор;
  • металлический корпус;
  • вентилятор;
  • устройство для дистанционного розжига;
  • рама для крепления корпуса.

Газовый баллон соединяют с редуктором, который обеспечивает равномерную подачу топлива на горелку. Воздух вокруг камеры сгорания нагревается, вентилятор выдувает его в помещение. Порядок практически такой же, как и при изготовлении дизельной тепловой пушки. Наглядно устройство газового обогревателя представлено на схеме:

Эта схема наглядно демонстрирует устройство тепловой пушки, работающей на сжиженном бытовом газе. К вентилятору необходимо подвести электропитание

Читайте также:
Установка уголка на столешницу кухни. Установка угловой столешницы для кухни своими руками: соединение через планку

С газовой тепловой пушкой следует использовать только баллоны, которые заполнены газом на профессиональном оборудовании. В баллонах, заполненных кустарным способом, может произойти утечка

Во время изготовления и эксплуатации газовой тепловой пушки рекомендуется придерживаться следующих правил:

  1. Трубы подачи газа в местах соединений необходимо тщательно загерметизировать.
  2. В обязательном порядке установить устройство для дистанционного розжига, поскольку ручной розжиг может привести к взрыву.
  3. Внимательно следить, чтобы газовый баллом всегда был на достаточном расстоянии от обогревателя, иначе баллон перегреется и газ взорвется.
  4. Никогда не использовать с газовой пушкой баллоны, заправленные кустарным способом.
  5. Не оставлять работающий прибор без наблюдения на длительное время.

Еще один важный момент — соотношение мощности газовой пушки и размеров обогреваемого помещения. Нельзя использовать слишком мощное устройство в маленькой комнате, поскольку это может легко привести к возгоранию.

Принцип работы тепловой пушки на отработанном масле

Принцип работы тепловой пушки на отработанном масле

Наиболее экономичными генераторами тепла являются обогреватели на отработанном масле. Из названия техники понятно, почему данная система самая выгодная. В качестве источника энергии используются отходы производства, непригодные для эксплуатации в других целях. Потому теплогенераторы на отработке чаще всего устанавливают в местах скопления большого количество технического нефтепродукта. Выгодно отапливать ним автомастерские, гаражи, производственные помещения.

Отопители на отработке: принцип работы

Источниками энергии для пушки выступают разные виды отработанных жидких масел:

Непригодны слишком вязкие виды горючего с показателем выше 90 по стандарту SAE. Также не стоит заливать в тепловой агрегат экологически опасные вещества.

Воздухонагреватели на отработанном масле характеризуются капельным типом нагревающей конструкции. Топливо капает в раскаленную чашу, испаряется, выделяя тепло. Более мощные приборы предполагают наличие горелки и фильтрующих систем.

В процессе работы нагреватели воздуха на отработанном масле выделяют много продуктов сгорания. Поэтому такие приборы чаще всего стационарные: их соединяют с дымоходом для вывода вредных веществ из помещения. Агрегаты с косвенным нагревом можно использовать для обогрева территорий, где есть люди. Это все те же СТО, гаражи, а также другие виды мастерских, служебные помещения, дачи, теплицы, оранжереи, склады, бытовки.

Мобильные устройства с прямым нагревом, как правило, маломощные, за счет чего и количество выхлопов минимальное. Тем мне менее обогревать такими приборами людные территории не рекомендуется. Компактные агрегаты чаще служат для технологической сушки, а не для обогрева. С их помощью можно ускорить затвердение бетона, штукатурки, краски и прочих отделочных материалов. Особенно полезным обогреватель оказывается во время зимнего строительства.

Описание пушки на отработке

Тепловая пушка на отработанном масле конструктивно мало отличается от газовой разновидности. В ней имеется горелка, которая предназначена для работы с жидким топливом. Есть в конструкции ещё и вентилятор для нагнетания воздуха. Взамен газового клапана в этом случае устанавливается топливный насос, он отвечает за перекачивание горючего из бака, который располагается под корпусом. В этом и состоит основное отличие.

По принципу газовых обогревателей оборудование на отработке может иметь одно из двух исполнений, первое предполагает использование прямого, тогда как второе – непрямого нагрева. Перед тем как вами будет изготовлена тепловая пушка на отработанном масле, вы должны учесть, что продукты горения отработки гораздо токсичнее по сравнению с природным газом.

Это указывает на то, что даже в хорошо вентилируемом помещении такой обогреватель в короткое время создаст неблагоприятные условия. Если же устройство оборудовать раздельным отводом газов и патрубком для дымовых газов, то использовать пушку можно будет везде. Для того чтобы обеспечить мобильность, к корпусу необходимо укрепить раму с колесами.

Конструкция тепловой пушки на отработке

Если вами будет собираться тепловая пушка на отработанном масле, то вы должны ближе ознакомиться с тем, из чего состоит такая конструкция и как работает. Нижняя часть представляет собой бак для топлива. Устройство размещается сверху, в нём происходит соединение вентилятора и камеры сгорания. В последнюю будет подаваться топливо, тогда как вентилятор станет нагнетать в помещение горячий воздух.

Для розжига и транспортировки отработки необходимо использовать:

  • соединительную трубку;
  • форсунку;
  • фильтр;
  • топливный насос.

Электродвигатель следует зафиксировать к вентилятору. В центральной части корпуса необходимо зафиксировать камеру сгорания. Она будет иметь вид металлического цилиндра, диаметр которого в 2 раза меньше по сравнению с диаметром корпуса. При сжигании отработки продукты сгорания будут выводиться, поступая через трубку из камеры. Для того чтобы прогреть помещение площадью 600 м 2 , необходимо будет около 10 л топлива.

Проведение сборки

Если вами будет собираться тепловая пушка на отработанном масле, то ее нижний корпус необходимо расположить в 15 см от верхней части. Для того чтобы бак для масла не перегревался, его следует выполнить из материала, который обладает низкой теплопроводностью. Для этого нужно использовать металлический бак, который укрывается теплоизоляционным материалом. Используя толстый металл, вы сможете выполнить верхний корпус, для этого следует применить стальную трубу.

Методика проведения работ

Когда собирается тепловая пушка на отработанном масле своими руками, в корпусе следует закрепить:

  • вентилятор с электрическим мотором;
  • насос с форсункой;
  • камеру сгорания с вертикальным отводом.

На следующем этапе устанавливается топливный насос, тогда как из бака необходимо вывести трубу, через которую отработка будет подаваться на топливный фильтр, а после – на форсунку. Верхний корпус торцов необходимо закрыть сетками. О том, чтобы вентилятор питался от электричества, необходимо подумать отдельно. Если доступа к сети нет, то можно использовать аккумулятор.

Важно помнить о том, что самодельная тепловая пушка на отработанном масле — это источник повышенной опасности, поэтому следует придерживаться правил техники безопасности. Даже если отдалиться от корпуса на метр, то там поток горячего воздуха может иметь температуру в 300 °С. Именно поэтому данное устройство не рекомендуется использовать в закрытых помещениях, ведь продукты сгорания могут представлять опасность.

Дешёвый способ отопления технических помещений – котёл на масле своими руками

В мастерской или гараже, где приходится работать в не очень комфортных условиях, с часто открываемыми воротами, обычные отопительные котлы не всегда помогут достичь необходимого эффекта по прогреву помещения.

Да и топлива уйдёт много. Прекрасно подойдёт отопление по принципу тепловой пушки, которая работает на отработанном масле. Только стоит такая установка дорого. Значительно дешевле обойдётся котел на масле своими руками.

Использовать это отопительное оборудование можно и для обогрева теплиц, если нет возможности подключить отопление от системы, обогревающей дом.

Принцип изготовления самодельного автономного отопления схож с тем, который используется для жилого помещения.

Разница в том, что для хозяйственных построек эстетика не очень важна, поэтому материалы для котла на отработанном масле своими руками обойдётся значительно дешевле. Да и топливо можно считать бесплатным.

Следует сразу оговорить, что использовать такой способ отопления в доме нельзя. Для гаража он оптимален. Найти отработанное масло в гараже проблем не составляет.

Читайте также:
Сушеные яблоки рецепт в духовке

Работать этот котел может на маслах:

  • натуральном;
  • синтетическом;
  • смеси.

Рис. 1 Вид топки, внутри кожуха

отопительный котел в собственном гараже, можно помочь соседям с утилизацией отработанного масла. И вам тепло, и в округе чисто.

Температура сгорания паров очень высока, поэтому приспособленный, под отработанное масло, дизельный котел из конструкционной стали не самое лучшее решение. На рисунке 1 прекрасно видна схема камеры горения, металл топки раскалён докрасна. Для изготовления предпочтительнее взять для корпуса тугоплавкий материал – чугун.

Перед сталью у него два основных преимущества:

  • он не боится высоких температур и резких перепадов;
  • менее подвержен разрушению от ржавчины.

Рис. 2 Строение топливного нагревателя

На чертеже показан котел промышленного производства. Самодельный котел на отработанном масле немного проще. Но принцип его работы от этого не меняется.

При сборке самодельного агрегата по чертежу необходимы:

  • компрессор;
  • масляный насос;
  • водяной насос, создающий циркуляцию воды в системе;
  • корпус;
  • горелка;
  • расширительный бачок;
  • трубы отопления;
  • патрубки;
  • штуцера.

Самым сложным в работе, при сборке котла на отработанном масле своими руками, будет изготовление горелки.

Рекомендации специалиста по сборке

Тепловая пушка на отработанном масле, фото которой представлены в статье, имеет камеры сгорания, которая выполняется из трубы. Ее следует выбирать с учетом толщины стенок, этот параметр должен быть внушительным. Камеру сгорания необходимо снабдить отверстием для форсунки, которая будет располагаться с одной стороны. В верхней части нужно расположить патрубок дымоотвода.

Важно приобрести или отыскать вентилятор с крыльчаткой. Это устройство и будет отвечать за направление потока воздуха. При сборке необходимо следовать определенному алгоритму. С одной стороны корпуса следует установить вентилятор, его производительности должно быть достаточно для эффективной работы. Камера сгорания должна располагаться по центру, она находится в кожухе. В его торце устанавливается форсунка.

Камерой сгорания может выступить оцинкованная труба, главное — отыскать изделие нужного диаметра. С двух сторон оно запаивается, а на следующем этапе в нем проделываются технологические отверстия для дымоотвода и форсунки. В камеру сгорания обязательно нужно установить пьезорозжиг. Для этого рекомендуется запастись изделием, которое вы сможете приобрести в специализированных магазинах.

Тепловая пушка на отработанном масле, описание которой было поставлено выше, должна иметь топливный бак. В качестве него лучше взять готовые изделия нужного размера. В пространстве фиксируется топливный насос и топливный фильтр тонкой очистки. Насос и форсунка на следующем этапе соединяются, дополнительно используется фильтр, по которому будет поступать топливо.

Выводы и полезное видео по теме

На представленном ниже видеоролике можно познакомиться с подробной инструкцией о том, как самостоятельно создать тепловую пушку, работающую на отработке.

Изготовленная своими руками или приобретенная в магазине тепловая пушка на отработке позволит значительно сэкономить средства на источнике энергии при использовании по существу бросового продукта – отработанного моторного масла.

При эксплуатации агрегата следует помнить, что он может стать источником пожара, поэтому желательно соблюдать все правила пожарной безопасности и не оставлять прибор без присмотра.

Принцип работы печи на отработанном масле

Работает такой агрегат на основе пиролиза, когда при сжигании органического топлива происходит разложение и газификация. Первоначально при нагревании идёт расщепление сложных азотно-углеродных цепочек молекул масла на химические элементы, после чего под действием кислорода они окисляются, а затем охлаждаются, на ходу превращаясь в безопасный азот и водяной пар.

Если печь сконструирована правильно, соблюдены все размеры и форма, то топливо будет сгорать с наибольшей отдачей, а в дымоходе не будут оседать частицы углерода в виде копоти и сажи.

В таком отопительном приборе выделяют три зоны:

  • в первой происходит горение паров нагретого до кипения масла;
  • во второй — газификация мусора;
  • третья — это камера дожига горючих веществ и снижения температурного скачка.

В нижней камере находится резервуар с отработанным маслом. При закипании органического топлива печь переходит в рабочий режим. Образовавшийся при этом пар загорается. Турбулентные потоки, возникающие в первой зоне, играют роль ограничителя и горящая смесь за счёт этого не имеет свободного доступа в зону пиролиза. Таким образом происходит саморегулирование. Помимо этого, под действием инерционной силы, горящие газы закручиваются в вихревой поток.

Необходимый для горения отработки воздух подаётся через окно с заслонкой, с помощью которой управляют скоростью сгорания масла и мощностью отопительного агрегата. Если заслонку закрыть полностью, то печь потухнет.

Закрученные в спиральный жгут пары масла попадают в камеру высокотемпературного дожига. По сути это труба, имеющая определённый диаметр и длину, с множеством отверстий для воздуха. Здесь происходит перемешивание газов с кислородом, и окислительный процесс проходит достаточно интенсивно. Температура в этой зоне может достигать 900 °C и выше, в результате чего азот становится более активным. Оксиды азота и углерода собираются вверху зоны пиролиза.

Полный дожиг несгоревших продуктов газификации происходит в верхней камере печи. Её конструктивные особенности таковы, что позволяют обеспечить понижение температурного скачка. Теряющий активность при невысоких температурах азот вновь вытесняется кислородом. Таким образом, на выходе получаем безопасный азот в газообразном состоянии, нагретый водяной пар. Выброс твёрдого оксида углерода осуществляется через дымоход.

Достоинства и недостатки печей на отработке

Простота конструкции, небольшое потребление топлива, лёгкость в эксплуатации — это те факторы, которые делают данные отопительные агрегаты особенно привлекательными. Помимо этого у них имеется ещё ряд достоинств:

  1. Эффективно и быстро нагревают закрытые помещения.
  2. Не зависят от наличия электричества или газа.
  3. Можно использовать печь для приготовления пищи.
  4. Размеры и вес конструкции позволяют её при необходимости перевозить.
  5. Отсутствие открытого огня.
  6. Печь позволяет сжигать отработанное масло и его пары, и при соблюдении условий эксплуатации не является пожароопасной.

Несмотря на большое количество плюсов, у данной конструкции есть немало недостатков:

  1. Необходимость фильтрации масла, иначе присутствующие в нём примеси могут засорить подающую трубку.
  2. Требуется слишком высокий дымоход для создания тяги, более 4 м высотой.
  3. Высокая температура поверхностей оборудования.
  4. Дымоход и печь приходится чистить ежедневно.
  5. Грязь в помещении, шум в процессе работы и неприятный запах.
  6. Возможность возгорания, если камера сгорания переполняется отработкой.
  7. Отопительный агрегат гаснет лишь тогда, когда топливо сгорит целиком.

ВАЖНО! Приступать к чистке печи можно только после её полного остывания.

Электрические пушки – универсальность применения

Электрическая группа тепловых вентиляторов допустима к использованию в жилых, торговых, офисных помещениях как дополнительного источника обогрева. Электромодели часто оказываются незаменимы при выполнении ремонтно-отделочных работ для быстрого понижения влажности.

Какой дом Вам нравится больше? Дом из бруса 17.33%

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: