Как сделать трансформатор своими руками — пошаговая инструкция, схема, чертежи, список материалов + фото готового самодельного трансформатора
Каркас
Сделать каркас трансформатора своими руками не сложно. Подходящий материал для этого — картон. Полость внутри каркаса должна быть немного больше по размеру, чем тело сердечника, а боковины без труда входить в проём трансформатора. Используя круглый сердечник, наматываются две катушки, при использовании пластин в форме буквы «Е» — одну.
Применяя круглый сердечник от лабораторного автотрансформатора его нужно вначале обмотать изоляционной лентой и уже потом наматывать провод, по всему кругу распределяя витки необходимого количества.
Закончив намотку первичного слоя провода, ее надо заизолировать четырьмя слоями тканевой изоляцией, поверх начать накручивать витки вторичной обмотки. Затем такой же лентой полностью обматывают провод, оставив лишь окончания обмоток.
Как разобрать и собрать трансформатор?
броневой стержневой трансформатор Наиболее легко разобрать трансформаторы на витых броневых и стержневых магнитопроводах, так как их сборка и разборка занимает считанные минуты.
Однако при сборке требуется точное сопряжение отдельных частей магнитопровода. Поэтому при разборке, обязательно пометьте сопрягаемые части магнитопровода, чтобы в последствие их можно было правильно собрать трансформатор.
При производстве витых броневых и стержневых магнитопроводов, лента наматывается на шаблон, а затем весь пакет разрезается. Половинки сердечника маркируются так, чтобы при сборке можно было восстановить положение сердечника имевшее место до разрезания.
Чтобы предотвратить вибрации и гудение, можно во время сборки склеить половинки магнитопровода клеем на основе эпоксидной смолой. Небольшое количество клея нужно нанести на зеркальные сопрягающиеся части магнитопровода.
Если после разборки магнитопровода, на нём остались остатки старой эпоксидной смолы, то их можно удалить при помощи самой мелкой наждачной шкурки (нулёвки).
При промышленной сборке, в смолу добавляют в качестве наполнителя ферромагнитный порошок.
При нескольких сборках и разборках трансформатора на витых броневых сердечниках, могут переломиться лапки стягивающего хомута.
предохранение от поломки лапок стягивающего хомута
Чтобы этого не произошло во время тестирования, можно стянуть магнитопровод 8-10-тью слоями изоляционной ленты.
Стержневые витые и штампованные магнитопроводы трансформаторов
Стержневые витые и штампованные магнитопроводы могут иметь как один каркас поз.2, так и два каркаса поз.1 с обмотками расположенными симметрично.
Первичные и вторичные обмотки двухкаркасных трансформаторов следует распределять равномерно на оба каркаса.
От взаимного положения каркасов, зависит относительная фазировка обмоток.
- Самодельный кольцевой трансформатор
- Промышленный неразборный кольцевой трансформатор.
- Кольцевой витой магнитопровод
Кольцевые магнитопроводы не требуют сборки-разборки, так как сами и являются каркасом для обмоток.
броневой штампованный трансформатор
- Ш-образная пластина
- Замыкатель
- Трансформатор
Броневые штампованные магнитопроводы, с так называемым Ш-образным железом, тоже можно перематывать, но их разборка может занять намного больше времени, чем все остальные операции. Дело в том, что при сборке таких трансформаторов, последние пластины набора часто вбиваются молотком.
Если же трансформатор ещё и прошёл пропитку вместе с магнитопроводом, то разборка может превратиться в сущий ад.
Пластины пропитанного парафином магнитопровода после разборки можно сварить в воде, чтобы отделить от парафина. Парафин же легко удалить с поверхности воды после того, как он застынет.
Если магнитопровод пропитан лаком, то после разборки, пластины нужно хорошо прожечь в бензине, но это имеет смысл только при ремонте какой-нибудь дорогостоящей аппаратуры.
удаление замыкателя трансформатора
Чтобы было легче разобрать трансформатор, следует сначала удалить все замыкатели, а затем попытаться выбить несколько Ш-образных пластин с какого-нибудь края или середины, если в середине есть пластины установленные не в перекрест.
Пример разборки и сборки штампованного броневого магнитопровода.
Это выходной трансформатор лампового однотактного УНЧ, поэтому Ш-образные пластины и замыкатели собраны с магнитным зазором. Мне нужно превратить его в силовой трансформатор, для чего я должен собрать Ш-образные пластины трансформатора в перекрест.
вставка и Ш-образных пластин
Чтобы быстро собрать трансформатор, можно сразу вставлять и Ш-образные пластины и замыкатели.
Очень часто у радиолюбителя после перемотки таких трансформаторов, остаются лишние пластины. Это снижает габаритную мощность трансформатора.
Для того чтобы все пластины вошли в каркас, вставляйте Ш-образные пластины и замыкатели заусенцами вниз.
Когда половина пластин будет вставлена, установите однообразно (не в перекрест) две Ш-образные пластины без замыкателей. Не вставляёте эти пластины до конца. Затем продолжите вставлять пластины до 2/3 всех пластин. Вставьте оставшуюся 1/3 часть Ш-образных пластин без замыкателей. Вот, что у Вас должно получиться. Обычно остаётся несколько пластин, которые невозможно всунуть в каркас и два десятка замыкателй.
Теперь нужно вставить оставшиеся пластины промеж двух заложенных ранее пластин и вбить их при помощи текстолитового или деревянного бруска и молотка. В завершение сборки магнитопровода, нужно вставить все замыкатели.
На картинке пластина броневого штампованного магнитопровода и трансформатор собранный из таких пластин.
Это одна из самых неудачных конструкций магнитопровода. Во-первых, эти пластины не имеют отдельного замыкателя, что сильно затрудняет сборку-разборку, а во-вторых, они снабжены крепёжными отверстиями, проходящими через тело магнитопровода, что снижает габаритную мощность. От использования подобных трансформаторов лучше воздержаться.
Видео: Как разобрать трансформатор?
Очень часто бывает нужна проволока, а где её взять? Один из вариантов — это разобрать старый трансформатор.
Поделиться ссылкой:
Как разобрать и собрать трансформатор?
Обмотки
На брусок из дерева, размерами как у стержня, одевают катушку. Но прежде нужно просверлить в нем отверстие для намоточного прутка.
-
Как починить ноутбук, который не заряжается
Отвертки изолированные-диэлектрические до 1000В — советы как выбрать лучшего производителя
Диэлектрический изолированный инструмент для работы — какой лучше выбрать? Обзор производителей, фото + видео
Данный элемент вставляют в обмоточное приспособления и производят намотку:
- сначала на катушку нужно намотать лакоткань в два слоя;
- один из концов провода зафиксировать на боковине и произвести медленное вращение рукоятки станка;
- наматывание витков нужно производить вплотную, делая между слоями прослойки из тканевой изоляции;
- после этих действий, провод обкусывают и получившийся второй конец фиксируют на боковине вблизи с первым;
- оба конца оснащают изоляционными трубками;
- наружную часть обмотки изолируют;
- таким же образом делается вторичная обмотка.
Так производится намотка трансформатора своими руками.
Если все выполнено правильно, то трансформатор будет работать без перебоев.
При желании наглядно посмотреть трансформаторы, собранные своими руками можно найти фото в различных источниках.
Трансформатор на 120 Вт
Трансформатор 220 на 24 вольта на 120 Вт подходит для электродвигателей разной мощности. Сердечники во многих конфигурациях устанавливаются листового типа. Магнитопроводы, в свою очередь, имеются с высоковольтной обмоткой. Выводы в устройствах стандартно имеются в количестве двух. Некоторые модели производятся с клеммами для подключения к оборудованию. Системы охлаждения на сегодняшний день существуют различные. Однако чаще всего речь идет об обычном понижении температуры за счет циркуляции воздуха.
Катушки в трансформаторах часто устанавливаются на опорные кольца. В некоторых случаях у моделей есть расширители. Переключатели также используются в трансформаторах. Трансиверы применяются как ортогонального, так и подстроечного типа. В данном случае многое зависит от показателя рабочей частоты сети. Если она не превышает 40 Гц, то можно смело использовать ортогональные трансиверы. В противном случае для нормальной эксплуатации устройства подходят лишь подстроечные компоненты. Стабилизаторы применяются довольно редко.
Как сделать трансформатор своими руками?
Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.
Что понадобится для сборки?
Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.
В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:
Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.
Для изготовления трансформатора своими руками вам понадобятся:
- Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
- Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
- Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
- Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
- Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.
Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.
Расчеты
Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1
Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.
В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1
Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.
Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,
Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.
Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2
Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)
Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1
Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2
Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.
Таблица: выбор сечения, в зависимости от протекающего тока
Медный проводник | Алюминиевый проводник | ||
Сечение жил, мм 2 | Ток, А | Сечение жил. мм 2 | Ток, А |
0,5 | 11 | — | — |
0,75 | 15 | — | — |
1 | 17 | — | — |
1.5 | 19 | 2,5 | 22 |
2.5 | 27 | 4 | 28 |
4 | 38 | 6 | 36 |
6 | 46 | 10 | 50 |
10 | 70 | 16 | 60 |
16 | 80 | 25 | 85 |
25 | 115 | 35 | 100 |
35 | 135 | 50 | 135 |
50 | 175 | 70 | 165 |
70 | 215 | 95 | 200 |
95 | 265 | 120 | 230 |
120 | 300 |
Сборка повышающего трансформатора
Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.
Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.
Для сборки вам потребуется выполнить такую последовательность действий:
- Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора
Если у вас имеется готовый образец, можете переходить к следующему этапу.
- Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Рис. 3: проденьте вывод первичной обмотки
- Уложите первый слой изоляции под первичку. Рис. 4: нанесите слой изоляции на катушку
- Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Рис. 5: намотайте первичку
В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.
- Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
- После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку
Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.
- Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
- Выведете концы вторичной обмотки на щечку каркаса.
- Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник
Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.
Сборка понижающего трансформатора
Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.
Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.
Процесс изготовления заключается в следующем:
- Возьмите старое или изготовьте основание для катушки.
- Зафиксируйте на трансформаторном каркасе слой изоляции.
- Намотайте первичную обмотку с попеременной изоляцией слоев.
- Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
- Зафиксируйте выводы обеих катушек.
- Установите пластины сердечника.
Испытание
Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.
Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.
Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.
Собираем трансформатор в домашних условиях
Бывают в жизни ситуации, когда нужен трансформатор с особыми характеристиками для конкретного случая. К примеру, сгорел сетевой тр-р в любимом приемнике, а именно такого для замены у вас нет. Зато есть другие ненужные тр-ры от старой техники, которые валяются без дела, вот их можно попробовать самому переделать под конкретные параметры. Далее мы расскажем, как рассчитать и сделать трансформатор своими руками в домашних условиях, предоставив все необходимые расчетные формулы и инструкцию по сборке.
- Расчетная часть
- Порядок изготовления
Расчетная часть
Итак, начнем. Для начала необходимо разобраться, что представляет из себя такое устройство. Трансформатор состоит из двух или более электрических катушек (первичной и вторичной) и металлического сердечника, выполненного из отдельных железных пластин. Первичная обмотка создает магнитный поток в магнитопроводе, а тот в свою очередь индуцирует электрический ток во второй катушке, что показано на схеме ниже. Исходя из соотношения числа витков в первичной и вторичной катушки, трансформатор либо повышает, либо понижает напряжение, пропорционально ему меняется и ток.
От размеров сердечника зависит максимальная мощность, которую трансформатор сможет отдать, поэтому при проектировании отталкиваются от наличия подходящего сердечника. Расчет всех параметров начинается с определения габаритной мощности трансформатора и подключаемой к нему нагрузки. Поэтому сначала нам необходимо найти мощность вторичной цепи. Если вторичная катушка не одна, то их мощность нужно суммировать. Расчетная формула будет иметь вид:
- U2 — это напряжение на вторичной обмотке;
- I2 — ток вторичной обмотки.
Получив значение, нужно сделать расчет первичной обмотки, учитывая потери на трансформации, предполагаемый КПД около 80%.
От значения мощности Р1 подбирается сердечник, его площадь сечения S.
- S в сантиметрах;
- Р1 в ватт.
Теперь мы можем узнать коэффициент эффективной передачи и трансформации энергии:
- 50 — это частота сети;
- S — сечение железа.
Эта формула дает приблизительное значение, но для простоты расчета вполне подойдет, так как мы изготавливаем деталь в домашних условиях. Далее можно приступить к расчету количества витков, сделать это можно по формуле:
Так как расчет у нас упрощенный и возможна небольшая просадка напряжения под нагрузкой, увеличьте число витков на 10 % от расчетного значения. Далее нужно правильно определить ток наших обмоток, сделать это нужно для каждой обмотки в отдельности по этой формуле:
Определяем диаметр необходимого провода по формуле:
Исходя из таблицы 1 выбираем провод с искомым сечением. Если подходящего значения нет, нужно сделать округление в большую сторону до табличного диаметра.
Если посчитанного диаметра нет в таблице, или слишком большое заполнение окна получается, то можно взять несколько проводов меньшего сечения и получить в сумме искомое.
Чтобы узнать поместятся ли катушки на нашем самодельном трансформаторе, требуется посчитать площадь окна тр-ра, это образованное сердечником пространство, в которое помещаются катушки. Уже известное число витков умножаем на сечение провода и коэффициент заполнения:
Данный расчет производим для всех обмоток, первичной и вторичной, после чего нужно суммировать площадь катушек и сделать сравнение с площадью окна магнитопровода. Окно сердечника должно быть больше площади сечения катушек.
Порядок изготовления
Теперь, имея расчеты и материал для сборки, можно приступить к намотке. На подготовленную картонную катушку производим укладку первого слоя обмотки. Для этого удобно использовать электродрель, зажав катушку в патроне с помощью особого приспособления (в качестве него может выступать болт с двумя шайбами и гайкой). Закрепив на столе или верстаке дрель, на малых оборотах, производим укладку провода, виток к витку без перехлестов. Между слоями провода укладываем один слой изоляции — конденсаторную бумагу. Между первичной и вторичной обмоткой нужно сделать два слоя изоляции во избежание пробоя.
Намного проще, если вы планируете перематывать готовый трансформатор на желаемое напряжение. В этом случае достаточно при размотке подсчитать количество витков вторичной намотки, и зная коэффициент трансформации:
Можно подсчитать необходимое количество витков под требуемое напряжение:
Также рекомендуем просмотреть видео, на которых наглядно демонстрируется порядок сборки трансформатора в домашних условиях:
Перед проверкой прозвоните обмотки, убедитесь, что их сопротивление не слишком мало, нет обрывов и пробоев на корпус изделия. Первое включение необходимо проводить с особой осторожностью, желательно последовательно с первичной обмоткой включить лампу накаливания мощностью 40-90 Ватт.
В данной статье приведена инструкция, которая доступно объясняет, как сделать трансформатор своими руками в домашних условиях. Для примера мы описали последовательность расчета и сборки броневой модели, как наиболее распространенного вида преобразователей. Его популярность обусловлена простотой изготовления моточных узлов, легкостью сборки, ремонта и переделки. На основе этой самоделки легко можно сделать тр-р для зарядки автомобильного аккумулятора, или же изготовить повышающий тр-р для лабораторного источника питания, электрический выжигатель по дереву, горячий нож для резки пенопласта или другой прибор для нужд домашнего мастера.
Будет интересно прочитать:
Собираем повышающий трансформатор собственными руками
Повышающий трансформатор является силовым прибором для изменения входного напряжения в большую сторону. На первичную обмотку поступает более низкое напряжение. На выходе оно поступает через вторичную обмотку в нужных величинах. Монтируют его как в бытовых, так и в производственных сетях.
Потребность в такой конструкции обусловлена нестабильностью напряжения, подаваемого через электросеть. Если бы не было повышающих трансформаторов, трудно было бы избежать таких неприятных последствий нестабильности, как порча включенных приборов и даже возгорание электропроводки.
В статье мы рассмотрим технические особенности масляных трансформаторов и принцип их действия. В качестве бонуса читатель найдет в статье интересный видеоматериал и обучающее пособие Л.С. Герасимова, А.И. Майорец “Обмотки и изоляция силовых масляных трансформаторов”.
Функционирование и принцип устройства
Чтобы понять, что такое трансформаторы, повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.
Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается.
Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.
От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ. Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры.
Рассматривая, как работает трансформатор, повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции.
Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.
Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.
При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.
Собираем своими руками
Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.
Разновидности преобразователей 12 на 220 вольт
Инверторы — устройства, позволяющие преобразовывать постоянные токовые величины, включая 12 B, в переменный ток c изменением уровня напряжения или без. Выпускаемые в настоящее время преобразователи напряжения постоянных токовых величин могут быть представлены:
- регуляторами напряжения;
- преобразователями уровня напряжения;
- линейными стабилизаторами.
Как правило, такие приборы являются генераторами периодического напряжения, приближенного к форме синусоиды.
Как сделать своими руками
Для преобразования напряжения из низкого уровня в высокий, и наоборот, применяются повышающие или понижающие трансформаторы. Они представляют собой электрические машины с высоким коэффициентом полезного действия и применяются во многих областях техники.
Можно сделать трансформатор своими руками в домашних условиях. Чтобы правильно собрать повышающий трансформатор, надо точно выполнить весь технологический процесс и рекомендации по сборке этого типа электрических машин, которые будут приведены ниже.
Что потребуется для самостоятельной сборки
Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт. Для самостоятельной намотки трансформатора нужны ответы на такие вопросы:
- Для чего нужен трансформатор: повышать или понижать напряжение?
- Какие напряжения должны быть на входе и выходе аппарата?
- Работает аппарат от сети переменного тока 50 Гц или его надо рассчитывать на другую частоту?
- Какова будет мощность самодельного трансформатора?
После получения ответов можно приступать к покупке нужных материалов. Для этого покупают ленточную изоляцию (лакоткань) для будущего трансформатора, сердечник для него (если есть подходящий по мощности от старого, сгоревшего телевизора, то можно использовать и его), нужное количество провода в эмалевой изоляции. Используемые материалы и инструменты:
- сердечник из трансформаторного железа;
- изоляция (лакоткань);
- провод;
- тонкий картон;
- доски и деревянные бруски;
- стальной пруток;
- клей;
- пила;
- ножницы;
- вольтметр.
Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44, где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью. Берем половину вторичной обмотки, также укладываем, изолируем.
Собираем магнитопровод, стягиваем его отдельные части хомутом. Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации.
Для намотки обмоток можно сделать простейший намоточный станок. Для этого берут доску длиной 40 см и шириной 100 мм. На нее шурупами присоединяют два бруска 50 х 50 миллиметров так, чтобы расстояние между ними было 30 см. Они должны быть просверлены на одинаковой высоте сверлом диаметром 8 мм. В эти отверстия заводят пруток, на который предварительно надевается катушка будущего трансформатора.
С одной стороны, на штыре должна быть нарезана резьба на длину 3 см и на нее с помощью двух гаек закреплена ручка, которой вращают пруток с катушкой при намотке трансформатора.
Размеры вышеописанного намоточного станка не критичны — все зависит от размеров сердечника. Если он сделан из ферросплавов и имеет форму кольца, то придется обмотку выполнять вручную. Наглядно процесс сборки повышающего трансформатора приведен в видеоролике.
Расчет количества витков
Определяем число витков на 1 В. Рассчитываем по формуле: К=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.
Предварительный расчет количества витков можно сделать исходя из требуемой мощности аппарата. Например, если нужен повышающий трансформатор с 12 до 220 В, то требуемая мощность такого аппарата будет в пределах 90-150 Вт. Выбираем О-образный тип магнитопровода от старого телевизора или покупаем подобный в магазине. Сечение его должно быть выбрано по формуле из электротехнического справочника. В этом примере оно приблизительно равно 10-11 см².
Следующий этап — определение количества витков на 1 В, которое в данном случае равно 50 Гц, деленное на 10-11, что-то около 4,7- 5 единиц на вольт. Теперь можно посчитать количество витков первичной и вторичной обмотки: W1= 12 Х 5 = 60 и W2= 220 Х 5=1100.
Затем надо определить токи в них: I1 = 150_12=12,5 А и I2=150:220=0,7 А. Найдем сечения и диаметры проводов обмоток по формулам из справочника. Повышающий трансформатор предварительно рассчитан, можно приступать к его намотке.
Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт. Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности, деленной на напряжение.
Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки, умноженный на коэффициент 0,8.
Рабочий процесс изготовления каркасов катушек
При применении круглого сердечника его предварительно обматывают ленточной изоляцией и затем прямо начинают мотать на него провод, распределяя нужное количество витков по всему кольцу.
После того как закончена намотка первичной обмотки, ее закрывают 3-4 слоями лакоткани и затем сверху начинают накручивать витки вторичной ее части. При использовании обычных магнитопроводов каркас катушек делают так:
- делается выкройка гильзы с отворотами на сторонах торцов;
- из картона вырезают щечки;
- свертывают тело катушки по намеченным линиям в небольшую коробочку и заклеивают;
- надевают на гильзу верхние части (щечки) и, отогнув отвороты, приклеивают.
После этого ленточной изоляцией закрывают провод, предварительно выведя наружу концы обмоток.
Изготовление обмоток
Катушку надевают на деревянный брусок с размерами стержня магнитопровода. В нем предварительно сверлится отверстие для прутка намоточного. Эта деталь вставляется в станок, и начинается процесс изготовления обмотки:
- на катушку наматывают 2 слоя лакоткани;
- один конец провода закрепляют на щечке и начинают медленно вращать ручку станка;
- витки надо укладывать плотно, изолируя каждый намотанный слой от соседнего лакотканью;
- после того как намотана катушка первичной обмотки, провод обрезают и второй его конец закрепляют на щечке рядом с первым.
Расчеты параметров
На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:
N = 40-60 / S, где S – площадь сечения сердечника в см2. Константа 40-60 зависит от качества металла сердечника. Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.
- Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
- Низковольтная для накала 2,18 х 5 = 11 витков.
- Низкого напряжения накальная 2,18 х 6,3 = 14 витков.
Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм2, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.
Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом. Расположение в пространстве стержней служит для разделения системы на следующие виды.
Количество витков первичной обмотки
Берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности. Рассчитаем высоту каркаса с обмотками.
Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.
Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм. Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм. Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.
Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.
При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.
Заключение
В данной статье были рассмотрены основные функции повышающих трансформаторов и способ самостоятельной сборки. Больше информации о трансформаторах можно узнать в учебном пособии Дымкова А.М. “Расчет и конструирование трансформаторов”.
Трансформатор Николы Тесла: история создания, основные составляющие, принцип действия и схема
Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.
Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают принцип ее работы.
Я планирую целый цикл статей по поводу устройства и работы трансформатора теслы. В этой части я помогу вам разобраться – какие виды тесел бывают, что у них общего и в чем они отличаются.
Как читать эту статью.
Эта статья предполагает, что вы знаете, что такое электрический ток и чем конденсатор отличается от катушки. Я буду стараться излагать все, как можно проще, но, к сожалению, я не всесилен. Если какие-либо моменты останутся непонятными, прошу прочитать еще раз, если и это не поможет, прошу оставить комментарий.
Для того, чтобы не прерывать рассказ ненужными подробностями, но оставаться политкорректным, я буду делать сноски. Сноска будет обозначаться таким образом — [12].
Как правильно называть это устройство
Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как
Замечу, что имя Тесла не склоняется, тоесть грамматически не верно говорить “Трансформатор Теслы”, хотя, если вы так скажите, все вас поймут.
Также существуют сленговые названия трансформатора Тесла, некоторые из них
Часто трансформатор называют его типом – СГТЦ, ССТЦ итп.
Принцип работы Трансформатора Тесла.
Трансформатор Тесла состоит из двух обмоток[1] – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.
Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.
Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.
Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.
Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.
Есть одна очень хорошая аналогия —
Аналогия с качелями
Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качель – это ток в во вторичной обмотке, а высота подъема – наше долгожданное напряжение.
Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха и мы видим наши красивущий стример.
Естественно, раскачивать качели нужно не абы-как, а в точном согласии с их собственными колебаниями. Количество колебаний качель в секунду называется “резонансная частота”.
Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.
Теперь рассмотрим ситуация, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний.
Такие качели и есть аналогом трансформатора Тесла.
Итак, чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.
Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качель (максимальной длинны стримера).
Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем.
Основные виды катушек тесла
Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ). С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла. Типы катушек принято называть из английскими аббревиатурами. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода.
Самые распространенные типы катушек тесла:
Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.
Основные детали катушки тесла
Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажу о основных деталях теслы сверху вниз.
Тороид – выполняет три функции.
Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
Третяя – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.
От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички [4].
Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий, ознакомиться с которыми можно тут.
Вторичка – основная деталь теслы.
Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.
Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу [5].
Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.
Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.
Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.
Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.
Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.
Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.
Заземление – как не странно, тоже очень важная деталь теслы.
Очень часто мне задают вопрос – куда же бьют стримеры? Я эту картинку я уже показывал в статье про плазменный шар, но покажу еще раз, и отвечу на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.
Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно [2][3].
[1]: Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).
Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).
[2]: Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.
[3]: теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало. Внимание! Изготовление тесел с противовесами представляет намного большую опасность, чем тесел с простым заземлением, потому как вся конструкция находится под высоким относительно земли потенциалом. А относительно большая емкость между противовесом и окружающими предметами способна негативно на них повлиять.
[4]: Это правило справедливо для “пней” – вторичных обмоток с отношением длинны к диаметру до 5:1
[5]: Это правило справедливо для тесел с мощностью меньше 20кВА
Что такое трансформатор Тесла
Сегодня трансформатором Тесла называют высокочастотный высоковольтный резонансный трансформатор, и в сети можно найти множество примеров ярких реализаций этого необычного устройства. Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей. Но все ли помнят, как и для чего создавался изначально этот удивительный прибор?
История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов.
Указать конкретный год, когда именно пришла к ученому эта идея, вряд ли можно точно, однако известно, что 20 мая 1891 года Никола Тесла выступил с подробной лекцией в Колумбийском университете, где представил сотрудникам Американского института электроинженеров свои идеи, и кое-что проиллюстрировал, показав наглядные эксперименты.
Целью первых демонстраций было — показать новый способ получения света посредством использования для этого токов высокой частоты и высокого напряжения, а также раскрыть особенности этих токов. Справедливости ради отметим, что современные энергосберегающие люминесцентные лампы работают именно на принципе, который как раз и предложил для получения света Тесла.
Окончательная теория относительно именно беспроводной передачи электрической энергии вырисовывалась постепенно, ученый потратил несколько лет жизни, доводя до ума свою технологию, много экспериментируя и совершенствуя кропотливо каждый элемент схемы, он разрабатывал прерыватели, изобретал стойкие высоковольтные конденсаторы, придумывал и модифицировал контроллеры цепей, но так и не смог воплотить свой замысел в жизнь в том масштабе, в каком хотел.
Однако теория до нас дошла. Доступны дневники, статьи, патенты и лекции Николы Тесла, в которых можно найти исходные подробности относительно данной технологии. Принцип действия резонансного трансформатора можно узнать, прочитав например патенты Николы Тесла №787412 или №649621, уже доступные сегодня в сети.
Если попробовать кратко разобраться в том, как же работает трансформатор Тесла, рассмотреть его устройство и принцип действия, то в этом нет ничего сложного.
Вторичная обмотка трансформатора изготавливается из провода в изоляции (например из эмальпровода), который укладывается виток к витку в один слой на полый цилиндрический каркас, отношение высоты каркаса к его диаметру обычно берут равным от 6 к 1 до 4 к 1.
После намотки вторичную обмотку покрывают эпоксидной смолой или лаком. Первичная обмотка изготавливается из провода относительно большого сечения, она содержит обычно от 2 до 10 витков, и укладывается в форму плоской спирали, либо наматывается подобно вторичной — на цилиндрический каркас диаметром несколько большим, чем у вторичной.
Высота первичной обмотки, как правило, не превышает 1/5 высоты вторичной. К верхнему выводу вторичной обмотки подключают тороид, а нижний ее вывод заземляют. Далее рассмотрим все более подробно.
Например: вторичная обмотка навита на каркас диаметром 110 мм, эмальпроводом ПЭТВ-2 диаметром 0,5 мм, и содержит 1200 витков, таким образом высота ее получается равной примерно 62 см, а длина провода составляет около 417 метров. Пусть первичная обмотка содержит 5 витков толстой медной трубки, навитых на диаметр 23 см, и имеет высоту 12 см.
Далее изготавливают тороид. Его емкость в идеале должна быть такой, чтобы резонансной частоте вторичного контура (заземленная вторичная катушка вместе с тороидом и окружающей средой) соответствовала бы длина провода вторичной обмотки так, что эта длина равнялась бы четверти длины волны (для нашего примера частота получается равной 180 кГц).
Для точного расчета полезной может стать специальная программа для рассчета катушек Тесла, например VcTesla или inca. К первичной обмотке подбирается высоковольтный конденсатор, емкость которого вместе с индуктивностью первичной обмотки образовывала бы колебательный контур, собственная частота которого была бы равна резонансной частоте вторичного контура. Обычно берут близкий по емкости конденсатор, а настройку осуществляют подбором витков первичной обмотки.
Суть работы трансформатора Тесла в каноническом виде заключается в следующем: конденсатор первичного контура заряжается от подходящего источника высокого напряжения, затем он соединяется коммутатором с первичной обмоткой, и так повторяется много раз в секунду.
В результате каждого цикла коммутации возникают затухающие колебания в первичном контуре. Но первичная катушка является для вторичного контура индуктором, поэтому электромагнитные колебания возбуждаются соответственно и во вторичном контуре.
Поскольку вторичный контур настроен в резонанс с первичными колебаниями, то на вторичной обмотке возникает резонанс напряжений, а значит коэффициент трансформации (соотношение витков первичной обмотки и охваченных ею витков вторичной обмотки) нужно умножить еще и на Q – добротность вторичного контура, тогда получится значение реального соотношения напряжения на вторичной обмотке к напряжению на первичной.
А так как длина провода вторичной обмотки равна четверти длины волны индуцируемых в ней колебаний, то именно на тороиде будет находиться пучность напряжения (а в точке заземления — пучность тока), и именно там может иметь место максимально эффектный пробой.
Для питания первичной цепи используют разные схемы, от статичного искрового промежутка (разрядника) с питанием от МОТов (МОТ — высоковольтный трансформатор от микроволновой печи) до резонансных транзисторных схем на программируемых контроллерах с питанием выпрямленным сетевым напряжением, однако суть от этого не меняется.
Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:
SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.
Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).
Сам Тесла как мог пытался добиться именно такого режима работы своего трансформатора, и зачатки этой идеи можно увидеть в патенте № 568176, где применяются зарядные дроссели, Тесла потом развивал схему именно по этому пути, то есть стремился максимально эффективно использовать первичную цепь, создавая в ней резонанс. Об этих экспериментах ученого можно прочитать в его дневнике (в печатном виде уже изданы записи ученого об экспериментах в Колорадо-Спрингс, которые он проводил с 1899 по 1900 год).
Говоря о практическом применении трансформатора Тесла не стоит ограничиваться лишь восхищением эстетическим характером получаемых разрядов, и относиться к устройству как к декоративному. Напряжение на вторичной обмотке трансформатора может достигать миллионов вольт, это в конце концов – эффективный источник сверхвысокого напряжения.
Сам Тесла разрабатывал свою систему для передачи электроэнергии на большие расстояния без проводов, используя проводимость верхних воздушных слоев атмосферы. Предполагалось наличие и приемного трансформатора аналогичной конструкции, который бы понижал принятое высокое напряжение до приемлемого для потребителя значения, об этом можно узнать, прочитав патент Тесла №649621.
Особого внимания заслуживает характер взаимодействия трансформатора Тесла с окружающей средой. Вторичный контур является открытым контуром, и система термодинамически отнюдь не является изолированной, она даже не закрытая, это – открытая система. Современные исследования в этом направлении ведутся многими исследователями, и точка на этом пути еще не поставлена.
Тесла катушка (трансформатор тесла)
Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.
Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.
С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.
Как работает трансформатор тесла
Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.
Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.
Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.
Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.
Принцип действия трансформатора Тесла похож на работу обычного трансформатора. Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.
простая схема трансформатора тесла
Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.
колебание напряжения в трасформатре тесла
Тесла обладает тремя основными характеристиками:
- резонансной частотой вторичного контура,
- коэффициентом связи первичной и вторичной обмоток,
- добротностью вторичного контура.
Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.
Основные детали и конструкции трансформатора Тесла
Тороид
Тороид – выполняет три функции.
Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
Вторая – накопление энергии перед образованием стримера.
Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.
От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.
Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,
Вторичная обмотка – основная деталь Теслы
Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.
Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.
Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.
Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.
Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.
Защитное кольцо
Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.
Первичная обмотка
Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.
Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.
Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.
Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.
первичные обмотки трансформатора тесла
Заземление
Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!
Стримеры замыкают ток, показанный на картинке синим цветом
Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.
Поэтому задавая вопрос обязательно ли заземлять теслу?
Заземление для теслы – обязательно.
Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).
Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).
Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.
Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:
- SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
- VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
- SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
- DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.
Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).
Виды эффектов от катушки Тесла
- Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности. - Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
- Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.
Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.
Практическое применение трансформатор тесла
Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.
Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.
В настоящее время катушка Тесла не нашла широкого применения на практике в быту.
Новое в трансформаторах тесла
В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.
схема трансформатора тесла на транзисторе
Схема трансформатора тесла выглядит невероятно просто и состоит из:
- первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
- вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
- разрядника;
- конденсатора;
- излучателя искрового свечения.
Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:
- Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
- Генератор колебания на лампах.
- На транзисторах.