Три простые схемы датчиков освещенности

Простой контроллер освещения

Стоит не дорого, свой стабилизатор питания (можно подавать от 5 до 20В), регулировка чувствительности радиуса обнаружения (от 3х до 7 метров), угол обнаружения (120-140, зависит от конкретной линзы и типа датчика), регулировка времени отпускания, а так же два режима работы:

1. Одиночный захват — в этом режиме при срабатывании датчика несколько раз подряд на его выходе остается высокий логический уровень.
2. Импульсный захват — в этом режиме на выходе при каждом срабатывании датчика появляется отдельный импульс.

Снабдив такой датчик источником постоянного тока и небольшой платой с транзисторным ключом, парой резисторов, диодом и реле, получаем готовое устройство, которое сможет включать и отключать нашу нагрузку, когда в поле датчика будет находиться объект.


Поразмыслив дальше, все-таки решил я применить простой микроконтроллер Attiny13 и связать все в один взаимосвязанный пучок: клавишный выключатель, PIR-датчик и еще добавил датчик уровня освещенности (о нем речь пойдет ниже).

Логика работы устройства:

    Приоритет включения всегда у клавишного выключателя, не зависимо от уровня освещенности и нахождения объекта в поле PIR-датчика.

По истечении примерно 5 часов, при включенном клавишном выключателе, свет автоматически отключится. Иногда домочадцы, а порой и я сам забываю выключить свет.

Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице темно (тут на помощь приходит фото датчик), свет включается, и горит пока объект не выйдет из поля PIR-датчика.

Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице темно, свет включается, и горит, если объект выйдет из поля PIR датчика, освещение продолжает работать в промежутке времени, заданным регулировочным потенциометром на PIR- датчике от 5 секунд до 300 секунд.

  • Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице светло, свет не включится, пока уровень освещенности не упадет до заданного порога или не включится клавишный выключатель.
  • Далее была разработана схема электрическая принципиальная, содержащая недорогие и доступные компоненты:

    Для питания схемы используется трансформатор с двумя выходными обмотками по 9В (ТПГ-2), первая обмотка служит для питания микропроцессорной части устройства и выносного датчика уровня освещенности. Вторая обмотка для питания PIR-датчика и обмотки реле. Для 12В использован однополупериодный выпрямитель и интегральный стабилизатор напряжения, в данном случае такая схема думаю оправдана т.к в PIR-датчике присутствует свой стабилизатор напряжения. Транзистор Q3 служит для согласования уровней между PIR-датчиком и микроконтроллером, выход PIR — датчика LVTTL c максимальным порогом 3,3В. Транзистор Q2 служит для индикации состояния, транзистор Q1 управляет обмоткой силового реле к которому подключена наша лампа освещения. Переменный резистор необходим для регулировки чувствительности датчика освещения. Цепочка R2, D3, D6, C2 необходима для захвата напряжения сети от клавишного выключателя. Дребезг пульсаций обрабатывается программно.

    Для разработки датчика освещения я использовал импортный фототранзистор из своих старых залежей, не знаю даже маркировки, но думаю подойдет например такой BPW96C. Так как устройство находится далеко от улицы или какого-либо проема, просто припаять фототранзистор на плату в моем случае не получится, а тянуть линию порядка 10 метров до фототранзистора я не рискнул, в связи с чем сделал повторитель на Rail-to-Rail операционном усилителе. Но тут натолкнулся на проблемы с калибровкой, в общем сигнал фототранзистора был очень мал для нормальной работы, и я переделал повторитель на не инвертирующий усилитель с коэффициентом усиления 2:

    Если вы будете повторять конструкцию и фототранзистор будет выдавать подходящий уровень, вместо резистора R2 установите перемычку 1206 с 0 значением, а резистор R4 исключите из схемы. Фототранзистор у меня был NPN, подключил пину J1-1 коллектор, к пину J1-2 эмиттер.

    Собрав датчик уровня освещенности я залил плату компаундом Виксинт ПК-68 и усадил в термоусадочную трубку, оставив на поверхности только шляпку фототранзистора с окошком.

    Печатные платы контроллера:

    датчика уровня освещенности:

    Фото готового устройства на этапе отладки:

    Схема соединений всех устройств:

    Дополнительно была разработана вторая версия печатной платы для корпуса типа D3MG с установкой на DIN-рейку и разъемом для программирования микроконтроллера AVRISP (в первой версии я для программирования подпаивал провода с разъемом к плате). Микропрограмма микроконтроллера написана на языке С в среде Atmel Studio.

    Исходный код, две версии печатных плат и схем электрических принципиальных с перечнями комплектующих (использовался САПР Dip Trace 3.0.0.1), а также файл симуляции для Proteus 8 вы можете найти в репозитории — LightController.

    PS: перед установкой, плату контроллера и PIR-датчика на всякий случай вскрыл двумя слоями цапон-лака. Устройство подключается к сети через автоматический выключатель (номинал зависит от потребления ламп), в моем случае автомат подключен через автоматический выключатель номиналом 2 А.

    Делаем фотореле своими руками

    Одним из многочисленных автоматов, в общем смысле слова, является фотореле. Оно визуально незаметно, малофункционально и применяется во многих нишах. Устройство обладает единственной реакцией на внешний фактор наличия или отсутствия света — соединение или разрыв линии, по которой идет ток. Последнее используется как напрямую для отключения или активации потребителей, так и в качестве сигнального импульса. Встретить фотореле можно во многих сферах жизни, от контрольных линий производства или турникетов метро, до их присутствия в роли элементов выключателей освещения различного плана.

    Читайте также:
    Стол в гостиную - фото идеального сочетания в интерьере

    Турникеты в метро:

    Многие не раз попадали в ситуации, когда в темноте не видно расположения предметов. Причем это мешает не только процессу личного перемещения, но и создает неудобство, когда нужно что-то найти в темноте. Вопрос вполне решаем установкой лампы. Вот только сразу выявляется проблема с ее включением в темноте. Здесь в роли автомата может применятся фотореле, включающее освещение именно в те моменты, когда наступает темнота.

    Упомянутая ниша использования не единственная. На основе реакции датчика на видимое излучение, построены и считающие единицы товара приборы, и охранные устройства. Оба названых типа определяют пересечение луча света объектом. На том же принципе бывают выполнены системы автоматического открытия дверей, ворот или шлагбаумов.

    Простота конструкции позволяет легко изготовить комплекс из реагирующей части и фотореле своими руками, о чем и пойдет речь в статье. Будут рассмотрены виды соединения готовых сборок, выпускаемых промышленностью и их схемы, раскрывающие сущность названых частей, от самых элементарных, до использующих в своей основе микроконтроллер.

    Схема простого фотореле

    Начнем с простого устройства наподобие ночника. Когда светло, он выключен, но чем темнее становится, тем ярче горит лампа. Сразу маленькое напоминание — питание устройства 220 В, так что нужно быть аккуратнее и внимательнее при его сборке и проверке.

    Чем меньше освещенность фоторезистора, тем сильнее открыт семисторный ключ Q6004LT. Соответственно, больше тока предоставляется нагрузке, в роли которой выступает маломощная лампа накаливания.

    Есть вариант описанной схемы, использующий уже 5 элементов. В ней лампа просто загорается в темноте на максимальную яркость и гаснет в моменты попадания света на фоторезистор.

    Простая схема фотореле:

    Настройка чувствительности выполняется подбором значения R1. Изменять в какую-либо сторону его нужно в относительно небольших пределах. Мощность резистора выбирается для всех случаев равной 1 Вт. Семистор КУ208Г можно сменить на КУ601Г без потери функциональности конечного устройства, но в любом случае, на названый элемент схемы нужно ставить теплоотвод — при использовании указанной нагрузки, он сильно греется.

    Другой несложной конструкцией можно назвать использование фотореле в связке с несколькими транзисторами. Приведенная схема изначально рассчитана на подключение потребителей через линию размыкания электромагнитного реле.

    Фоторезистор PR1 с подстроечником R1 выступают в роли делителя напряжения, управляющего состоянием транзистора VT1, который в свою очередь открывает или закрывает VT2. Последний, и производит пропуск тока на реле K1, размыкающее или соединяющее линию питания нагрузки. Диод VD1 шунтирует скачки тока в моменты срабатывания электромагнитного элемента, защищая транзисторы.

    Обратите внимание! Указанное устройство питается уже не от сети 220 В, а имеет свой токовый ввод от 5 до 15 В. Что касается функций подстроечника R1 — он нужен для установки чувствительности к потоку света, приводящего к срабатыванию самого устройства.

    Повторяемый промышленный вариант

    В качестве своеобразного эталона рассмотрим схему фотореле ФР-602 от компании EIK. Большая часть представленных на рынке устройств аналогичного плана конструктивно похожи, отличаясь лишь в мелочах.

    Принципиальная схема фотореле вместе с печатной платой:

    Как видно, конструкция проста и может быть выполнена в домашних условиях. Элементарная база:

    Обозначение на схеме Модель/тип Характеристики Аналоги
    С2 Конденсатор 0.7мкф, 400 В
    C4 Электролитический конденсатор 100 мкф, 50 В
    C5 47 мкф 25 В
    R2 Резистор 1.5 МОм, 0.125 Вт
    R3 220 Ом, 2 Вт
    R4 1 МОм, 0.125 Вт
    R5 560 кОм, 0.125 Вт
    R6 200 кОм, 0.125 Вт
    R7 100 кОм, 0.125 Вт
    R8 75 кОм, 0.125 Вт
    R9 33 кОм, 0.125 Вт
    WL Построечный резистор 2.2 мОм
    ZD1 Стабилитрон 1N4749 24 В 3 последовательно соединенных Д814А, или 2 Д814Д
    D1-D5 Выпрямительный диод 1N4007
    VD1 Выпрямительный диод 1N4148
    Q1, Q2 Биполярный транзистор BC857A КТ3107Б
    PH Фотоэлемент (фоторезистор) До 110 кОм
    Rel Реле SHA-24VDC-S-A (Rel1)

    Схема подключения классических фотореле к линии потребления

    Все виды выпускаемых промышленностью или сделанных самостоятельно реле, требуют отдельного питания. Соответственно, и два контакта устройства будут предназначены названым целям. Причем встречаются модели фотореле без встроенного преобразователя напряжения, что означает подачу питания к ним не от сети 220 В, а через отдельный понижающий блок. Линий, идущих к потребителям может быть несколько, в зависимости от количества внутренних электромагнитных переключателей. Причем ввод может быть и раздельным для каждого контакта, — объединенным между прочими — или вообще интегрированным с питанием самого фотореле.

    Датчик света у большинства моделей встроен в корпус самого устройства, но существуют и раздельные варианты, позволяющие выносить его в сторону от самого аппарата. Последнее нужно для случаев исключения засветки фотоприемника от управляемых ламп, чтобы система не превращалась в стробоскоп. То есть, когда темно — аппарат включает лампы. Становится светло — он их отключает. Опять срабатывает на мрак. И так по кругу.

    Одинарная

    Описанная ранее модель ФР-602 и аналогичные ей подключаются к линии следующим образом:

    На большое количество потребителей энергии

    Для управления мощной нагрузкой, например, при подключении прожектора или многочисленных ламп, лучше использовать промежуточные реле. В роли последних выбираются соответствующие приборы, которые выдерживают прохождение большого тока, достаточного для питания. Примером могут стать РК-1p/2p (Un), МРП-2, IEK ORM-41F-1, DEKraft ПР-102 и им подобные. Обратите внимание, что часть из реле аналогичного плана рассчитаны на управление переменным током (AC), в то время как другие постоянным (DC). Кроме того, напряжения включения может отличаться в нижнюю сторону от номинала розетки. Последние два фактора важно учитывать при проектировании монтажной схемы. Если реле-посредник питается от постоянного тока, то фотореле должно управлять подачей электричества к блоку преобразования. Который уже включившись, приведет в действие электромагнитный контактор, активирующий основную линию питания клиентских устройств.

    Читайте также:
    Уборка снега с крыш, как безопасно очистить кровлю?

    Использование иных моделей фотореле

    Здесь представлена схема подключения фотореле для другого варианта исполнения конечного автомата — с выносным датчиком чувствительности к свету и раздельными контактными линиями. Изначально она подготовлена для ФР-7Е, но подходит и для аналогичных моделей иных производителей.

    Обратите внимание, что представленное фотореле и упомянутое ранее, различаются корпусом, а в частности защитой устройства от внешних факторов. ФР-601/602 можно безболезненно размещать под открытым небом на улице, а у ФР-7Е для аналогичного действия требуется установка дополнительного кожуха. Но устройства подобного плана установки выпускаются со всеми необходимыми креплениями в стандартный электротехнический щиток, включая подготовленные места монтажа к DIN-рейке.

    Расширение функциональности с добавлением реле времени

    Планируя использовать фотореле для уличного освещения своими руками, можно слегка расширить его функциональность, добавив таймер отключающий свет через установленное время. Причина проста — не нужно тратить электричество на работу ламп всю ночь, когда они точно никому не нужны. С целью реализации можно использовать реле отключения, наподобие IEK ORT-A2-AC230V, THC-B1 или аналогичные.

    Расширенная схема питания уличного освещения:

    Микропроцессорное фотореле

    Современные технологии коснулись и фотореле. Все чаще начинают применяться устройства на базе микроконтроллеров, которые позволяют не только производить определение наличия светового потока, но и совмещать множество других функций. Причем расширение не требует сильного изменения аппаратной составляющей, достаточно модифицировать внутреннюю программу.

    Микроконтроллер — маленький компьютер, изначально ориентированный на управление устройствами в зависимости от внешних факторов и алгоритма. Кроме того, его возможностей вполне достаточно для присоединения к общей цифровой сети, объединяющей группы оборудования различного плана.

    Также стоит упомянуть о промышленных образцах фотореле, оснащенных «умной» частью. Но их функциональность обычно ограничена производителем. Поэтому лучше рассмотреть другую систему. К примеру, Arduino. Его возможностей вполне достаточно для осуществления контроля света, отключения линии днем и ночью, отправки сообщений о текущем используемом режиме или сигнализации о нарушениях в работоспособности лампы.

    На аппаратной стороне, все что непосредственно не касается функций контроля, возлагается на дополнительно подключаемые «шилды» к Arduino. В приведенной схеме последнее будет относиться к часам, датчику света и самому реле. Вопрос отправки статуса конечному владельцу решается за счет GSM модуля связи, который и будет отсылать SMS о текущем режиме работы системы.

    Принципиальная схема конструкции достаточно проста:

    Есть примечание, касающееся приведенной сборки. Обратите внимание, что релейный модуль имеет стороннее питание. Это сделано в целях избежания скачков тока, так как шилд берет много электричества из общей линии и может вызвать «просадку» напряжения при переключениях. Отдельное питание рекомендуется и SIM800L (на приведенной схеме он подключен напрямую к самому Arduino). Также модуль GSM-связи достаточно потребляющий элемент — ему нужно выработать определенную мощность для соединения с сотовой вышкой, а взять энергию с названой целью он может только из линии снабжения.

    Что касается программной части, написать соответствующий алгоритм сможет любой, знакомый с программированием микроконтроллеров Arduino. Тем более, есть множество кодов в интернете.

    Несмотря на функциональную простоту фотореле, ниш применения у него достаточно. Тем более, что малые возможности расширяются добавлением новых за счет небольшого усложнения схемы и использования микроконтроллеров.

    Видео по теме

    Схема подключения и монтаж датчика освещенности

    Датчик освещения LXP-02 и LXP-03. Монтаж

    В статье рассмотрим вопросы монтажа и подключения датчика освещенности. Также приведены электрические схемы наиболее популярных моделей датчиков света.

    Напоминаю, что это устройство широко применяется в сфере домашней автоматики для включения/выключения электрического освещения в зависимости от уровня освещенности на улице. Названия могут быть разные – датчик света, датчик освещенности, светоконтролирующим выключателем или фотореле, но суть одна.

    Подробно о таком датчике я рассказал в первой части статьи – Устройство и функции датчика освещенности. Там подробно рассмотрено его устройство, работа и характеристики.

    Поэтому – сразу перехожу к делу:

    Подключение датчика освещенности

    Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

    1. Схема по аналогии с датчиком движения

    Схема подключения датчика освещенности полностью совпадает со схемой подключения датчика движения. Отличается только “начинка” датчиков.

    Схема подключения датчика движения и датчика освещения

    Схема взята из статьи про датчик движения, ссылка выше.

    2. Схема подключения датчика света из инструкции

    Вот как схема подключения датчика света приведена в инструкции:

    Датчик освещения LXP. Схема подключения из инструкции

    3. Подключение на основе фото датчика

    Для тех, кто любит, чтобы всё было “на пальцах”, привожу такую картинку:

    Схема подключения датчика света на основе фотографии

    Небольшое пояснение по схемам подключения:

    • На коричневый провод приходит фаза.
    • На синий провод подключается ноль.
    • На красный провод подключается нагрузка (первый вывод светильника).
    • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

    Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели – последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про параллельное включение двух датчиков движения.

    Читайте также:
    Что такое обои под покраску?

    Итак, с подключением разобрались, теперь

    Монтаж датчика освещения

    Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

    У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

    Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно – датчик сработал – фонарь загорелся – стало светло – датчик выключился – стало темно… И так далее, замкнутый круг.

    Настройка и калибровка

    При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

    Кулечек для настройки датчика освещения

    Из органов настройки в датчике освещенности – только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

    Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

    Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

    Ну, а теперь самое интересное –

    Схемы датчиков освещения

    Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту – задавайте в комментариях.

    Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

    Датчик освещения LXP-02. Схема электрическая принципиальная

    Но принцип остается тот же:

    Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

    Фазу и ноль можно “перепутать”, как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

    Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется на уровне +22…24 Вольта стабилитроном типа 1N4748.

    Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к – VR – Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм – это та самая “крутилка”, с помощью которой устанавливается желаемый уровень срабатывания.

    Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

    Хотите экономить электроэнергию – ставьте максимальное сопротивление, крутите его по часовой (LUX-), и он будет срабатывать тогда, когда будет уже совсем темно.

    А хотите, чтобы освещение на улице включалось от малейшей тучки – крутите регулятор в другую сторону (LUX+).

    При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА. Реле своими контактами включает нагрузку, которая подключается через вывод LOAD.

    При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

    В заключение – схема более мощной модели, LXP-03:

    Датчик освещения LXP-03. Схема электрическая

    Тут схема та же, отличия перечислю:

    • Схема питания ограничивает напряжение в фазной цепи.
    • Диодный мост с фильтром – такой же как и в предыдущей схеме, я неудачно ее изобразил.
    • вместо одного стабилитрона – два последовательно, но напряжение питания схемы – то же, +24В.
    • Используется составная схема на двух комплиментарных транзисторах, поскольку реле более мощное, ток его катушки больше.

    Зная принцип работы схемы, её легко отремонтировать. А если хотите подробнее разобраться в ремонте, то в статье про ремонт датчика движения пошагово расписана методика и философия ремонта подобных устройств.

    Как быстро сделать простое фотореле, схемы не сложных фотореле

    Фотодатчики и реализованные на их основе электронные устройства, управляющие различными бытовыми приборами, давно завоевали популярность.

    Казалось бы, невозможно уже найти что-либо новое в схемном решении для таких устройств. Ниже предлагаю читателям три надежные схемы, отличающиеся простотой и высокой чувствительностью к воздействующему на датчики световому потоку.

    Эти несложные можно использовать в своих конструкциях автоматики и в устройствах управления.

    Устройство охранной сигнализации с самоблокировкой

    Простое и надежное устройство охранной сигнализации с самоблокировкой представлено на принципиальной схеме (рис. 1).

    Рис 1. Охранная сигнализация с самоблокировкой.

    Устройство применяется в качестве детектора освещения: светодиод HL1 загорается, если на фотодатчик – фоторезистор PR1 не попадает естественный или электрический свет. Практически этот электронный узел поможет при контроле зоны безопасности дома или садового участка.

    Пока фоторезистор PR1 освещен, его сопротивление постоянному электрическому току мало, и падение напряжения на нем недостаточно для отпирания тиристора VS1.

    Если поток света, воздействующий на фотодатчик, прерывается, сопротивление PR1 увеличивается до 1. 5 МОм, тогда конденсатор С1 начинает заряжаться от источника питания.

    Читайте также:
    Устройство металлической кровли

    Это приводит к отпиранию тиристора VS1 и включению светодиода HL1. Кнопка S1 предназначена для возврата устройства в исходное состояние.

    Вместо светодиода HL1 (и включенного последовательно с ним ограничивающего ток резистора R2) можно использовать маломощное электромагнитное реле типа РЭС 10 (паспорт 302, 303), РЭС 15 (паспорт 003) или аналогичное с током срабатывания 15. 30 мА. При увеличении напряжения источника питания ток потребления реле повышается.

    Вместо тиристора КУ101А можно применить любые тиристоры серии КУ101. Фотодатчик PR1 состоит из двух параллельно соединенных (для лучшей чувствительности нет необходимости в дополнительном усилителе сигналов) фоторезисторов СФЗ-1. Конденсатор С1 типа МБМ, КМ или аналогичный.

    Светодиод – любой. Все постоянные резисторы типа МЛТ-0/25. Кнопка S1 может быть любой. В авторском варианте использован’микропереключатель МПЗ-1.

    Датчик освещенности на ОУ

    На рис. 2 изображена схема датчика освещенности с усилителем на базе операционного усилителя К140УД6.

    Рис. 2. Схема датчика освещенности на ОУ.

    Резистор положительной обратной связи R4 вводит в схему петлю гистерезиса с целью предотвращения паразитных колебаний. Без положительной обратной связи, при эксплуатации узла с источником питания с напряжением более 11 В, в такой схеме возникают паразитные колебания (усилитель самовозбуждается и генерирует ложные срабатывания реле).

    Значение сопротивление резистора R4 установлено для напряжения источника питания 12 В. При увеличении Un сопротивление резистора R4 необходимо подобрать точнее. Чувствительность устройства регулируется переменным резистором R3.

    Операционный усилитель DA1 включен по классической схеме с коэффициентом усиления 1. Диод VD1 защищает транзистор VT1 от бросков обратного напряжения при срабатывании реле.

    Вместо микросхемы К140УД6 можно без изменений схемы применять однотипные операционные усилители К140УД608, К140УД7. Конденсатор С1 служит в схеме для фильтрации высокочастотных помех по напряжению. Транзистор VT1 можно заменить на КТ315А-КТ315В, КТ312А-КТ312В. Переменный резистор R3 типа СПЗ-1ВБ.

    Фотореле на таймере КР1006ВИ1 (555)

    На рис. 3 показана схема с универсальным таймером КР1006ВИ1.

    Этот простой автомат для включения ночного освещения можно эффективно применять как в городских условиях, так и на даче или в сельской местности.

    Рис. 3. Электрическая принципиальная схема фотореле (фото-датчика) на основе таймера КР1006ВИ1.

    Если на фоторезистор (два параллельно подключенных для лучшей чувствительности фоторезистора СФЗ-1) попадает хотя бы слабый дневной свет – транзистор VT1 закрывается, так как сопротивление между его базой и эмиттером значительно меньше, чем сопротивление между его базой и положительным выводом источника питания.

    При уменьшении освещенности рабочей поверхности фоторезисторов сопротивление между базой и эмиттером транзистора VT1 возрастает – становится больше 100 кОм.

    Когда сопротивление между базой VT1 и положительным выводом источника питания низкое, транзистор VT1 открывается. Реле К1 срабатывает и подключает вывод анода тиристора VS1 к «плюсу» источника питания.

    После этого включается универсальный таймер DA1 КР1006ВИ1 и на его выходе (вывод 3) устанавливается напряжение 10,5 В.

    К1006ВИ1 имеет достаточно мощный выход (вывод 3), позволяющий управлять устройствами нагрузки, потребляющими ток до 250 мА. Поэтому к выходу DA1 можно подключать маломощные реле без ключевого транзисторного каскада.

    Реле К1 срабатывает и удерживает во включенном состоянии лампу освещения HL1. Вместо лампы возможно применение другой активной нагрузки с потребляемой мощностью не более 0,2 А (этот параметр обусловлен характеристиками маломощного реле).

    Таким образом, нагрузка (электрическая лампа освещения) оказывается включенной всегда, пока на фотодатчик не воздействует хотя бы минимальный световой поток.

    Устройство выдержало экспериментальные испытания и работает надежно, оно применяется в авторском варианте для включения энергосберегающей лампы подсветки вечером и ночью (фотодатчик обращен к естественному свету). Благодаря высокой чувствительности прибора лампа освещения выключается при восходе солнца.

    Тиристор VS1 – КУ101А-КУ101Г, КУ221 с любым буквенным индексом. Транзистор VT1 можно заменить на КТ312А-КТ312В, КТ3102А-КТ3102Ж, КТ342А-КТ342В или аналогичный по электрическим характеристикам.

    Коэффициент усиления этого транзистора по току h21e должен быть не менее 40. Реле – любое маломощное, с током срабатывания 15. 30 мА при напряжении 12 В. Все постоянные резисторы типа MЛT-0.125. Конденсатор С1 типа КМ. С2 – типа К50-20 на рабочее напряжение более 16 В.

    Диоды VD1, VD2 защищают соответственно переход транзистора VT1 и выход микросхемы DA1 от бросков переменного тока и препятствуют дребезгу контактов соответствующих реле К1, К2 при их срабатывании. Такие диоды можно заменить на любые из серии КД522.

    Все три схемы непритязательны к питающему напряжению и при использовании в качестве узлов коммутации маломощных реле, стабильно работают с бестрансформаторными (способными отдать полезный ток более 70 мА) и трансформаторными стабилизированными источниками питания с выходным напряжением 10-16 В.

    Литература: Кашкаров А. П. Электронные устройства для уюта и комфорта.

    Что нужно, чтобы обезопасить дом от молнии?

    Достижения современной техники способны сделать жизнь в частном доме по-настоящему комфортной. Сейчас нет необходимости топить печь, чтобы в доме стало теплее, и греть воду, чтобы помыться: в домах устанавливают котлы отопления и бойлеры, холодильник и стиральная машина. Во многих домах есть кондиционеры. И, конечно, почти в каждом частном доме сегодня есть телевизор…
    Увы, всей этой техники легко лишиться.

    А стоит ли опасаться молний?

    Может показаться, что попадание молнии – редчайшая ситуация. Но это не так. Каждый год это явление природы становится причиной не менее чем 500 пожаров. А сколько приборов ежегодно выходит из строя под ее воздействием! Это влечет за собой соответствующие расходы – россияне тратят до 100 миллионов рублей на то, чтобы устранить ущерб, нанесенный таким электрическим разрядом.
    А ведь затрат так легко было бы избежать! Достаточно приобрести качественную систему молниезащиты, которая предотвратит случайное попадание молнии в ваш дом и защитит дорогое оборудование от перепадов напряжения.
    Компания ДКС – признанный производитель готовых комплексных решений. Для защиты частного дома компания предлагает комплекты для внешней молниезащиты, выпускаемой под брендом “Jupiter”. Задача системы “Jupiter” – предотвратить попадание молнии в дом, отвести ее в землю и рассеять. Кроме того, система предотвращает перенапряжение, уравнивая потенциалы между проводящими ток элементами, расположенными на частной территории.

    Читайте также:
    Шелковое постельное белье: плюсы и минусы

    Система внешней молниезащиты

    Какова задача внешней молниезащиты? Такие системы защищают от возгорания, которое может возникнуть из-за попадания молнии в объект. Впрочем, для некоторых зданий разряд молнии не опасен – если кровля выполнена из стального (толщина не менее 4 мм), медного (толщина не менее 5 мм, алюминиевого листа (толщина 7 мм), таким зданиям не нужна специальная защита.
    Но чаще всего толщина металлической черепицы или профиля – меньше, поэтому большинству зданий дополнительная защита все-таки требуется.

    Внешняя молниезащита состоит из следующих элементов:

    • молниеотводы (молниеприемники) – именно они принимают на себя удар молнии;
    • опуски (токоотводы) – по ним ток стекает к заземлителю;
    • заземлители – они обеспечивают рассеивание электрического разряда в земле;
    • соединители – эти элементы применяются для соединения компонентов системы друг с другом;
    • держатели – с их помощью элементы фиксируются на фасаде и кровле.

    Чаще всего молниеотводом служит молниеприемная сетка или трос. Материал для изготовления сетки – проволока из устойчивых к коррозии металлов. Например, алюминия, меди, нержавеющей стали, или стали, защищенной методом горячего цинкования.

    УЗИП или Внутренняя молниезащита

    Внешней защиты недостаточно, чтобы дом был в безопасности. Электрический разряд молнии несет угрозу электрооборудованию. Из-за молнии возникают скачки напряжения, выводящие из строя как бытовые приборы, так и электронику. Предотвратить повреждение оборудования позволяет использование УЗИП – устройств защиты от импульсных перенапряжений. Они относятся к системе внутренней молниезащиты и устанавливаются либо на входе электрических линий в дом – в распределительные щиты, либо в щитки, находящиеся в самом доме.
    Как это работает? В случае возникновения перенапряжения сопротивление защитных элементов снижается, и импульсы перенапряжения отводятся на систему заземления. Это позволяет предотвратить перегрузки и выход электроприборов из строя. УЗИПы рассчитаны на многоразовое использование – до 20 срабатываний. Если устройство вдруг выйдет из строя – вы об этом узнаете: сменный модуль поменяет цвет на красный.

    Защищаем частный дом от молнии

    ДКС предлагает уже готовый комплект, в который входит все необходимое для молниезащиты частного дома – даже держатели и соединительные элементы. Монтаж при желании можно произвести самостоятельно. Для этого потребуется:

    1. Установить молниеприемную сетку
    Для этого потребуется стальной пруток (минимальный диаметр – 8 мм). Пруток нужно уложить по кровле таким образом, чтобы получились квадраты (сторона 12 м2). Если общая площадь кровли вашего дома меньше 12 м2, то прутки достаточно зафиксировать по краям фасада и вдоль конька кровли.
    Важно, чтобы узлы получившейся сетки были соединены электрическим контактом с помощью болтовых соединителей. При необходимости можно прибегнуть и к сварному соединению, но сварка повреждает антикоррозионное покрытие, что негативно влияет на срок службы.
    Для крепления сетки на кровле нужно использовать пластиковые или металлические держатели. Для плоских кровель подходит пластиковый вариант, а для скатных – металлический. Шаг установки держателей – не более 1 м.
    Выступающие элементы кровли нужно присоединить к молниеприемной сетке. Если выступают неметаллические элементы, нужно будет дополнительно установить молниеприемники. При этом зона защиты молниеприемных мачт – конус, вершина которого совмещена с верхней точкой молниеприемника.

    2. Установить токоотводы
    Токоотводы – это опуски к заземлителя от молниеприемника. Они изготавливаются из полосы или прутка-катанки и закрепляются на фасаде (для этого применяются держатели – на каждый метр нужно не менее 1 штуки).
    Токоотводы нужно расположить так, чтобы расстояние между землей и точкой поражения было минимальным. Ток при этом должен растекаться по нескольким путям. Для этого токоотводы обычно располагаются по периметру здания и углам (не менее 1 штуки на 25 метров).
    В целях безопасности токоотводы должны располагаться вдали от дверей, окон и проходных зон. Если фасад подвержен возгоранию, расстояние от токоотвода до него должно составлять не менее 10 см.
    Спустите токоотвод в землю и прикрепите к контуру зазмеления с помощью болтовых соединителей. Не забудьте про антикоррозионную ленту – ей надо будет защитить места ввода токоотводов в землю.

    3. Организовать заземление
    Для этого по периметру здания прокладывается стальная полоса. Она должна располагаться на расстоянии не менее 1 метра от фундамента и не менее 0,5 метра от поверхности земли проложите стальную полосу по периметру здания. Оптимальное сечение полосы – 40х4 мм и более. Вертикальные заземлители позволят еще больше снизить заземление – их требуется от 3 штук на один контур и более.
    Чаще всего длина зазмелительных элементов – от 3 до 6 метров, но в некоторых случаях могут потребоваться и более длинные заземлители. При использовании системы молниезащиты ДКС вы можете собрать заземлитель любой длины, наращивая готовые изделия дополнительными стержнями.

    Читайте также:
    Установка потолка из пластиковых панелей своими руками: как сделать монтаж?

    Система “Jupiter” для молниезащиты, заземления и уравнивания потенциалов от ДКС – это надежная защита вашего дома. И не только дома! Наши решения могут применяться для защиты любых объектов.

    Преимущества системы молниезащиты от ДКС:

    • Широкий ассортимент совместимых друг с другом элементов позволяет быстро и легко собрать систему молниезащиты для любого типа кровли;
    • Изделия выпускаются в различных исполнениях: омеднение, медь, горячеоцинкованная сталь;
    • Мы выпускаем типовые альбомы и конфигураторы, которые упрощают клиенту просчет системы.

    Грозовое спокойствие: для чего нужен громоотвод на крыше, и как сделать молниезащиту здания

    Молния — чудовищное по своей разрушительной мощи явление. Сила тока в заряде, разрывающем грозовое небо всего на доли секунды, достигает полумиллиона ампер, а напряжение исчисляется десятками и сотнями миллионов вольт. Все, во что бы ни попала молния, за исключением металла и других проводников, мгновенно нагревается и, если достигает критической температуры, загорается. Чтобы этого не произошло, необходимо отвести молнию от здания или другого объекта в землю, для чего нужен громоотвод, токоприемник и заземляющий контур.

    Высотные дома, административные и коммерческие здания, цеха заводов, телевышки, памятники — все эти сооружения обязательно оснащают молниезащитой, чтобы избежать их повреждения. С частными домами ситуация совсем иная — коттеджи или дачи с установленными громоотводами встречаются редко. Причины у этого разные. Кто-то из владельцев уверен, что громоотвод, наоборот, притянет молнию; кто-то считает, что его защищает вышка сотовой связи, установленная в километре от коттеджа; кто-то просто экономит в уверенности, что вероятность удара молнии в дом слишком мала. Давайте разберемся, что из этого правда, и когда молниезащита на частном доме нужна, а когда без нее можно обойтись.

    Содержание

    Нужен ли громоотвод на крыше частного дома?

    С точки зрения безопасности, громоотвод нужен всегда — даже если вероятность попадания молнии мизерная, молниезащита и заземление снизят ее еще больше. То есть хуже точно не будет. Вот только цена молниеотвода с монтажом начинается от 30 000 рублей, и далеко не каждый готов потратить эти деньги на снижение вероятности удара молнии на тысячные доли процента. Поэтому обычно отдельно говорят о ситуациях, в которых устройство молниезащиты обязательно, а отдельно — о случаях, когда установка громоотвода — всего лишь рекомендация.

    Молниезащита кровли обязательно нужна:

    • когда дом находится в коттеджном поселке, деревне, городском частном секторе или стоит обособлено и вблизи нет высотных зданий;
    • при перекрытии кровли любыми видами металлических покрытий, включая профнастил и металлочерепицу;
    • когда дом построен на возвышенности или под ним есть грунтовые воды неглубокого залегания;
    • если в здании много работающей электроники или установлено мощное оборудование.

    При выполнении любого из этих условий необходимость монтажа молниезащиты — не вопрос для обсуждений, поскольку риск довольно велик. И он тем выше, чем южнее построен дом: в южных регионах грозы бывают значительно чаще, чем в северных, следовательно, и вероятность попадания молнии в дом возрастает. На карте ниже хорошо видно, как количество дней с грозами при движении на юг увеличивается с несколькими очагами возле горных хребтов.

    Конечно, заставить вас установить громоотвод на доме никто не может — это могут официально требовать только для общественных, многоквартирных, коммерческих и производственных зданий. Если речь идет о частном доме, молниезащиту оставляют на усмотрение владельца. Но не сделать громоотвод в частном доме в такой ситуации все равно, что не обработать огнезащитой деревянный брус для каркасного дома и сделать в нем закрытую проводку.

    Совсем другое дело, когда ваш дом:

    1. Находится в непосредственной близости от господствующей высоты: вышки сотовой связи, водонапорной башни, высотных зданий. Но учитывайте, что непосредственная близость — это не километр и даже не 500 метров. Это когда самая дальняя точка дома расположена не более чем в 1,2×h от высотного объекта, где h — его высота. То есть при высоте базовой станции в 100 м, каждый уголок вашего дома должен попадать в конус с вершиной в самой высокой точке вышки и с основанием радиусом 120 м.
    2. Построен в лесу с высокими деревьями. Радиуса защиты от одного дерева, если это не секвойя, не хватит, чтобы перекрыть весь дом, но деревьев в лесу очень много. Иногда для лучшей защиты на вершину самого высокого дерева вблизи дома крепят громоотвод.
    3. Расположен в районе, где грозы бывают редко. Если в числах, то это районы со средней за год продолжительностью гроз до 20 часов. На карте выше это красная и розовая зона.

    Во всех этих ситуациях риск попадания молнии очень незначителен, поэтому многие владельцы домов не делают молниезащиту, полагаясь на случай. С одной стороны, вероятность действительно низкая. С другой стороны, потери, если «что-то пойдет не так» будут очень велики: даже если дом не загорится, то вся электроника, включая блоки управления котлов отопления, в нем точно сгорит. Насколько такая экономия оправдана, каждый владелец дома решает для себя сам.

    Как работает молниезащита, и почему она эффективна

    Громоотвод на крыше дома эффективно защищает его от попадания молнии. Но как так происходит? Почему тонкий металлический штырь, соединенный с заземлением, способен противостоять разрядам мощностью в миллионы киловатт? Чтобы понять, как работает громоотвод, нужно понимать, откуда вообще появляются молнии, и почему в одних местах они бьют в сотни раз чаще, чем в других.

    Читайте также:
    Языки программирования ПЛК и программная платформа автоматизации CoDeSys

    Рождение молнии и «выбор» цели

    Во время дождя в грозовых облаках создается электрическое поле. Положительные заряды в облаке перемещаются вверх, а отрицательные скапливаются на его нижней границе. Если поле достаточно сильное, то оно вызывает лавинообразную ионизацию воздуха, из-за чего у поверхности земли накапливается положительный заряд. В результате напряженность между землей и облаками начинает расти до тех пор, пока не достигает критических значений. Именно в этот момент происходит разряд — молния. Иногда молния может ударить из верхних слоев облаков, тогда она будет притягиваться к отрицательно заряженным объектам. Но это бывает редко.

    Разряд всегда происходит там, где наибольшая напряженность. То есть в зоне риска высокие объекты, поскольку между ними и облаками меньше расстояние, и любые места, около которых легко накапливаются положительные заряды: водоемы, металлические конструкции, линии электропередач.

    Тем не менее, точно предсказать, где и когда ударит молния, невозможно. Известно только, что молния продвигается по ионному каналу между облаками и объектом-целью, и после удара этот канал исчезает не сразу. Поэтому если в грозовых облаках скопился большой заряд, молния может попасть в одно и то же место несколько раз. При этом согласно исследованию, проведенному физиками из университета Аризоны, с вероятностью 67% вторая молния ударит в радиусе нескольких десятков метров от места первого удара.

    И хотя предугадать точное место появления молнии нельзя, можно защитить все сооружения в зоне риска с помощью громоотвода.

    Устройство молниезащиты здания: разбираемся в деталях

    Молниезащита частного дома — несложная система, которая традиционно состоит из трех элементов:

    • громоотвод на крыше или, как его правильно называть, — молниеприемник;
    • токоотвод или заземляющий проводник;
    • заземление дома.

    В последние 15-20 лет в молниезащиту дома стали включать еще и четвертый элемент — защиту электросети дома от скачков напряжения и импульсных помех. Это не обязательное, но желательное дополнение к системе, которое позволяет избежать повреждения чувствительной электроники из-за молнии, ударившей не только в молниеприемник на крыше дома, но и просто в 1-2 км от здания.

    Молниезащита дома должна заставить молнию обойти здание и скользнуть по проводнику в землю, не причинив вреда. Это ее основная задача. Но есть и дополнительная: молниезащита сооружений в принципе снижает вероятность попадания разряда в здания за счет уменьшения напряженности около молниеприемника.

    Молниеприемник

    Громоотвод — первый элемент молниезащиты, задача которого — «встретить» молнию и не дать ей ударить по незащищенной крыше. Молниеприемник ставят в самой уязвимой части дома: на фронтоне, щипцах, башенках, совмещают с флюгером. Громоотвод для дачного дома обычно просто крепят в самой высокой точке фронтона по центру конька. Молниеприемник на большом коттедже либо делают в виде троса, натянутого между металлическими стержнями по длине крыши, либо ставят повыше — на специальной мачте высотой несколько метров.

    Принцип работы молниеприемника прост. Это острый проводник, из-за чего напряженность поля около него очень велика. Сильное электрическое поле приводит к появлению коронного заряда около острия громоотвода, который вызывает сильную ионизацию окружающего воздуха. В результате напряженность между землей и нижним краем облаков в точке, где установлен молниеприемник, снижается и, следовательно, уменьшается вероятность удара молнии. Впрочем, при большой высоте дома эффект разрядки очень незначительный, но коронный заряд все равно позволяет перехватить молнию на подлете и заставить ее пойти через громоотвод в землю, а не по стропильной системе крыши.

    Виды молниезащиты разделяются в зависимости от типа молниеприемника, который используется в системе:

    1. Металлический штырь. Самый распространенный и самый старый вид громоотвода. Как правило, это стальной металлический стержень длиной от 0,5 до 4 м и диаметром 10-12 мм. Медь для изготовления штыревого громоотвода подходит лучше, но в этом случае всю молниезащиту придется делать из медных прутков и пластин, а это дорого.
    2. Тросовый молниеприемник. Это стальной трос диаметром от 10 мм, который натягивают вдоль конька кровли и ее верхних изломов. Такой громоотвод делают на крышах сложной формы и большой площади, поскольку высота штыревого молниеприемника недостаточна, чтобы обеспечить надежную защиту всего здания.
    3. Сетчатый молниеприемник. Этот вид молниезащиты используют на больших коммерческих и общественных зданиях. В этом случае сразу несколько молниеприемников устанавливают в уязвимых частях кровли и соединяют друг с другом тросами. Получается токопроводящая сетка, которая защищает всю крышу здания.

    Независимо от вида молниеприемника, критически важно качество его соединения с токоотводом. Помните: через этот узел будут проходить миллионы вольт, поэтому любые огрехи при креплении могут привести к расплавлению соединения со всеми вытекающими последствиями.

    Токоотвод

    Токоотвод — это обычный проводник из стали или меди диаметром 6-10 мм. Его задача — безопасно доставить заряд к заземляющему контуру. Крепят токоотвод к молниеприемнику сваркой или специальным болтовым соединением, а вот к заземляющему контуру его обязательно приваривают.

    Для большей безопасности токоотвод спускают с крыши вдоль глухой стены, по возможности с противоположной стороны от входа в дом. Если в здании нет глухих стен, токоотвод проводят как можно дальше от окон. При прокладке его крепят так, чтобы провод не касался стен и поверхности кровли. При этом количество изгибов токоотвода должно быть минимальным. В идеале их должно быть всего два: поворот при спуске провода с крыши и поворот у земли для соединения с заземляющим контуром.

    Читайте также:
    Теплопроводность керамзитобетонных блоков: характеристики, коэффициент, таблица
    Заземление

    Заземляющий контур нужен для рассеивания энергии молнии в грунте. Обычно это три проводника, выстроенные в линию и соединенные в один контур четвертым горизонтальным проводником. Всю эту конструкцию закапывают подальше от дома, например, у забора.

    Иногда токоотвод подключают к уже готовому заземляющему контуру здания. Это ошибка. Если использовать общее заземление, частный дом вместо надежной защиты может получить дополнительный фактор риска. Дело в том, что энергия разряда молнии настолько большая, что она не сразу рассеивается в грунте. И за эти несколько секунд электроприборы, заземленные на тот же контур, могут сильно пострадать. Поэтому заземление дома и контур для молниезащиты не просто нельзя совмещать, их еще желательно расположить с разных сторон дома как можно дальше друг от друга.

    Контур заземления может быть не только линейным, но и треугольным. Особой разницы между такими конструкциями по эффективности нет. Вопрос скорее в удобстве монтажа: треугольный контур делают в тех случаях, когда нет возможности вырыть длинную траншею. Схема подключения заземления в доме в обоих случаях приведена ниже.

    Защита электросети дома

    В большинстве частных домов уже стоит защита от перенапряжения, короткого замыкания и других ненормальных режимов работы электросети. Поэтому защита от молнии обычно сводится к установке только одного класса оборудования — устройств защиты от импульсных помех (УЗИП) или разрядников.

    В отличие от обычного реле перенапряжения, УЗИП не сработает от перепада 10, 50 или 100 В. Его задача спасти электросеть от катастрофического повышения напряжения при ударе молнией либо в сам дом, либо рядом с ним, либо рядом с воздушной линией, от которой запитан ваш коттедж. В такой ситуации напряжение в сети может за доли секунды вырасти до нескольких тысяч вольт, что выведет из строя всю технику, если она не спрятана за УЗИП. Простое реле перенапряжения мало поможет при таком скачке напряжения — оно, скорее, само расплавится и сгорит вместе с остальным оборудованием.

    Чтобы обеспечить надежную защиту, разрядники монтируются в три уровня:

    1. Модуль первого класса ставят на вводном щите в дом, и он гасит основной разряд.
    2. Модуль второго класса устанавливают в распределительном щитке в доме, и он берет на себя остаточный импульс.
    3. Модуль третьего класса ставят для конкретного потребителя. Обычно это чувствительная электроника или критически важное для жизни оборудование, к примеру, аппараты искусственной вентиляции легких в медицинских центрах.

    Для удешевления системы можно использовать только УЗИП второго класса. Но без фильтра в виде разрядника первого класса он может сгореть.

    Как сделать громоотвод в доме

    Если вы умеете работать со сварочным аппаратом, то вы легко сможете сделать громоотвод своими руками. Провести токоотвод и сделать заземление также несложно. Единственное, где лучше прибегнуть к помощи специалиста — это установка УЗИП в щитки дома.

    Простейший молниеотвод можно сделать из куска арматуры диаметром 10 мм и более и длиной 2-6 м. Штырь нужно заострить сверху болгаркой и прикрепить к трубе или фронтону хомутами либо анкерными болтами. Второй вариант громоотвода — это заваренная по краям стальная труба 3/4˝. Главное, чтобы сварка была качественной. Самостоятельное изготовление молниеотвода позволяет сэкономить на устройстве молниезащиты 60-100$ — именно по такой цене можно купить громоотвод промышленного производства.

    Токоотвод делают из стального прута диаметром 10 мм. Понятно, что такую трассу придется делать из отдельных частей, сваривая их между собой или скрепляя специальными переходниками. Это неизбежно, но необходимо продумать путь токоотвода так, чтобы соединений прутков было как можно меньше. Прут лучше заказать уже согнутый, чтобы не сгибать его подручными средствами.

    При монтаже токоотвода используют держатели, можно металлические, но лучше их композитного непроводящего материала. Чтобы не было пробоя, токоотвод прокладывают не менее чем в 30 см от любых металлических элементов: водостоков, оконных решеток, отливов.

    Последний этап — это устройство заземляющего контура. Делается он по такому же принципу, что и заземление в частном доме:

    • вдали от дорожек и крыльца выкапывается траншея глубиной 2 м;
    • в дно траншеи вбиваются вертикально три стальных уголка 40×40 мм на расстоянии 1,5-2 м друг от друга;
    • поверх уголков приваривают стальную полосу толщиной 5 мм и более;
    • к стальной полосе приваривают токоотвод;
    • контур заземления для молниезащиты закапывают, при этом он должен быть не менее чем в метре от поверхности.

    Так как сделать заземление в доме линейного типа не всегда возможно, контур часто замыкают в форме равностороннего треугольника. Независимо от формы контура токоотвод к нему приваривают так, чтобы соединение возвышалось над уровнем земли минимум на 25 см.

    При монтаже молниезащиты здания важно помнить четыре правила:

    1. Нельзя красить ни молниеприемник, ни токоотвод, ни заземляющие стержни, иначе молниезащита просто не будет работать.
    2. Тщательно проверяйте все соединения и не один раз — через них будет проходить заряд в миллионы вольт.
    3. Старайтесь не использовать разнородные материалы: в месте соединения стали с медью со временем начнется электрохимическая коррозия, которая сильно увеличит сопротивление на этом участке.
    4. Контролируйте влажность грунта около заземляющего контура. В засушливые дни песчаные и супесчаные грунты нужно периодически проливать водой, поскольку в сухом песке заземление теряет эффективность.
    Читайте также:
    Что такое ХПК сточных вод?

    Кроме того, не забывайте о правилах работы на высоте: всегда используйте страховку, никогда не ходите по кровле непривязанные и не работайте на крыше в очень жаркие дни.

    Подведем итоги

    Молниезащита — эффективный способ застраховать себя от попадания молнии в дом. Хотя громоотвод на кровле не дает 100% защиты, он на порядки снижает вероятность получить негативные последствия при ударе молнии.

    Устанавливать молниезащиту лучше на всех зданиях, но есть ситуации, в которых это сделать просто необходимо. Например, когда дом стоит особняком в поле или построен на земле, где грунтовые воды подходят близко к поверхности.

    Задача молниезащиты — уменьшить вероятность попадания молнии в дом, а если это все же произошло — увести разряд в землю так, чтобы он не повредил строение. Чтобы выполнить эту задачу, в систему молниезащиты входит молниеприемник, который «ловит» разряд, токоотвод, по которому разряд перемещается, и заземляющий контур, который рассеивает молнию в грунте.

    Все работы по устройству молниезащиты легко сделать своими руками, включая изготовление громоотвода из арматуры или стальной трубы. Но для этого вам нужно уметь хорошо работать со сварочным аппаратом, поскольку от качества сварных швов прямо зависит надежность защиты.

    Как правильно сделать громоотвод и молниезащиту в частном доме и на даче своими руками

    «От сумы да от тюрьмы» не застрахован никто, а от удара молнии – тем более. После ослепительной вспышки и оглушительного грохота самое приятное — отделаться легким испугом и восторгом от пережитых впечатлений. Нехорошо, если сгорит электроника в доме. Еще хуже, когда случится пожар. Совсем недопустимо – поражение человека ударом молнии. Вывод простой: делаем молниеотвод!

    Откуда берется молния?

    Всему причиной веселые облачка, которые при приближении грозы постепенно нарастают и превращаются в темные громады кучевого типа. Верхние слои влаги в воздухе превращаются в мелкие кристаллики льда, а нижние остаются в виде капель воды. Так и получились две пластины гигантского конденсатора.

    Громадные структуры движутся в воздухе и заряжаются в результате трения: верхние слои накапливают положительные ионы, нижние – отрицательные электроны. Всему есть предел, и накопленный потенциал превращается в электрический разряд. В итоге, «пробивает» там, где наименьшее сопротивление: высокие деревья, крыши домов и … громоотводы!

    Как устроена защита от молнии

    Из вышеизложенного следует стратегия устройства молниезащиты: направить вероятный электрический разряд по безопасному для нас пути и застраховаться, таким образом, от неприятностей. С этой целью на достаточной высоте устанавливается молниеприемник, который предназначен для захвата грозового разряда.

    Схема устройства молниеотвода

    Далее электрический ток величиной порядка 100000А проходит по токоотводу к заземлителю. Последний обеспечивает связь защитной системы с грунтом. Таким образом, удар молнии минует защищаемые объекты и поглощается землей.

    Данная система защиты повсеместно распространена и носит название пассивной. Существует активные молниеотводы, которые имеют ионизатор, провоцирующий удар молнии. Это увеличивает вероятность защиты объекта от поражения. Стоит такого вида молниеотвод немало, и его монтаж сложно сделать своими руками.

    Варианты молниеприемника для частного дома

    Можно назвать три основных вида молниеприемника по типу конструкции:

    • стержневой молниеприемник;
    • в виде сетки;
    • тросовой молниеприемник;
    • покрытие крыши в качестве молниемника.

    Штыревой молниеприемник можно приобрести или сделать самому

    Молниеприемник в виде стержня наиболее известен и распространен. Существуют промышленные изделия с готовым крепежом. Любителям творить своими руками реально изготовить изящную конструкцию, украшающую здание. В любом случае штырь из стали должен иметь сечение не менее 70мм2, а для изделия из меди достаточно 35мм2. Таким образом, его диаметр может составлять 7-10мм.

    Длина стержня может варьироваться в пределах 0,5-2м, при этом он должен выступать хотя бы на полметра над всеми объектами в окружении здания. Стержневой молниеприемник принимает заряд в одной точке и особенно эффективен при защите небольших строений.

    Молниеприемник в виде сетки удобен для большой крыши

    Молниеприемник в виде сетки изготавливается из проволоки диаметром порядка 6мм. На фото можно оценить, как выглядит на практике конструкция подобного рода. Существуют уже готовые конструкции с размером ячейки 3-12м. Защита от молнии такого рода удобна в применении на крыше большой площади. Для предотвращения возгорания обрешетки молниеприемник монтируют на расстоянии 0,15м от поверхности кровли.

    В условиях частного дома более удобен в применении молниеприемник в виде троса. Его монтируют на коньке кровли, закрепив за две опоры на противоположных фронтонах. Возможен и комбинированный вариант, когда на упомянутых опорах дополнительно к тросу установлены штыревые молниеприемники.

    Трос должен иметь диаметр более 5мм и монтироваться на безопасной высоте от кровли. Конструкция такого типа обычно применяется на крыше с неметаллическим покрытием.

    Металлическая кровля крыши, при определенных условиях, может также выступать в качестве молниеприемника. При этом толщина металлочерепицы, профнастила или оцинкованного листа должны быть не менее 0,4мм. Заманчиво выполнить защиту от грозы, не применяя дополнительных материалов.

    Читайте также:
    Современный подоконник столешница своими руками

    Как работает токоотвод

    В идеале, для конструкции, изготовленной своими руками, материал молниеприемника, токоотвода и заземлителя должен быть один и соединен с помощью сварки, то есть — сталь. Такое решение обеспечивает надежность и долговечность защиты. На практике возможно использование оцинкованных и омедненных элементов, а также различных материалов. Их соединение обеспечивают применением зажимов с болтами и гайками.

    Токоотвод на крыше, на стене и цоколе дома

    Токоотвод из стали в виде прута или полосы должен иметь сечение не менее 50мм2, проводник из алюминии допускает размер 25мм2, а медный провод можно применять с площадью сечения 16мм2, что примерно соответствует диаметру 8,6 и 5мм соответственно.

    Требования к заземлителю

    Заземлитель представляет из себя несколько металлических стержней, забитых в грунт и соединенных между собой горизонтальной полосой при помощи сварки. Полоса выводится на поверхность земли и приваривается к токоотводу.

    Так выглядит готовый к проверке контур заземления

    Заметим, что не рекомендуется использовать защитный контур заземления для подключения молниеотвода. В случае применения общего заземлителя при грозовом разряде на поверхностях бытовых приборов может возникнуть опасное напряжение. Для защиты электропроводки и бытовой техники в частном доме от удара молнии на вводном щите устанавливаются устройства защиты от импульсных помех (УЗИП).

    Заземление для молниеотвода размещают не ближе 5м от крыльца и дорожек и заглубляют горизонтальный соединитель не менее 0,8м. Это необходимо для уменьшения вероятности поражения людей в случае грозового разряда.

    Защитная зона громоотвода

    Не следует питать иллюзии, что громоотвод на соседнем доме или расположенная недалеко металлическая вышка полностью обезопасят Ваше жилище от удара молнии. Защитная зона громоотвода имеет вполне конкретные границы. В любом случае на даче придется устроить собственную молниезащиту.

    Размер защищаемой зоны определяется высотой размещения молниеприемника

    Конус безопасности, создаваемый стержневым молниеприемником, имеет угол 45-50°. Указанное правило действует при высоте размещения молниезащиты до 15м. Вышеприведенный эскиз демонстрирует, что при угле 45° радиус защитной зоны равен высоте верхней точки стержня над уровнем земли. При значении 50° зона защиты будет чуть больше.

    В случае большого участка может возникнуть необходимость установки еще одного громоотвода. Его можно смонтировать на специальной мачте.

    Монтируем молниезащиту своими руками

    В первую очередь, необходимо выбрать молниеприемник в соответствии с вышеизложенными рекомендациями и имеющимися под рукой материалами. На крыше дачного дома проще всего монтировать обыкновенный стальной штырь. Оцинкованная труба или алюминиевый стержень будут работать еще лучше. При использовании патрубка его верхний конец следует заглушить.

    При наличии куска троса нужной длины и диаметра не составит труда протянуть его вдоль конька. На крыше большой площади эффективнее использовать вариант в виде сетки. Молниеприемник любой конструкции следует закрепить так, чтобы его не нарушило ветром.

    Если не иметь в виду сварку, токоотвод проще выполнить из толстого медного провода в соответствии с рекомендациями выше. Надежное соединение с молниеприемником можно обеспечить с помощью оцинкованных зажимов с болтами и гайками. Практично закрепить проводник к опорам водосточных труб.

    Размеры контура заземления в виде треугольника

    Заземляющий контур лучше всего обустроить там, где вероятность нахождения людей наименьшая. Также выгодно разместить его в месте, где всегда присутствует влага. Это улучшит контакт заземлителя с землей. Не будет лишним, если рядом с ним установить предупреждающий знак. Болтовое соединение с заземлителем лучше выполнить над землей на цоколе здания, а контакт в земле обеспечить сваркой.

    После монтажа всей системы электрическое соединение от молниеприемника до заземления можно проконтролировать мультиметром. Сопротивление заземляющего контура можно проверить только специальным прибором. Его величина должна быть не более 10Ом в том случае, если неподалеку возможно присутствие людей. Для отдельного молниеприемника, установленного вдалеке от дома, сопротивление заземления не должно превышать 50Ом.

    Стандартный прибор для измерения сопротивления заземления

    Хотя бы раз в год имеет смысл проверить целостность всей системы визуально. Раз в несколько лет следует откопать заземление и оценить степень коррозии металла. Если стержни в земле стали заметно тоньше, их необходимо заменить.

    Высокое дерево нам поможет

    Чтобы обустроить громоотвод на даче, можно использовать в качестве мачты высокое дерево, растущее неподалеку. Молниеприемник следует закрепить на его макушке так, чтобы он выступал не менее 0,5м над кроной. При этом не следует забывать, что дерево растет и меняет свои размеры.

    Пирамидальный тополь защитит дом от грозы

    Это означает, что молниеприемник и токоотвод следует крепить пластиковыми хомутами, которые не испортят ствол. Провод лучше использовать медный многожильный гибкий и проложить его следует с запасом дины. Кроме того, раз в несколько лет придется забираться наверх и переставлять молниеприемник выше макушки.

    Мы постарались доступно и лаконично изложить все тонкости создания защиты от природной стихии. Пусть у вас получится изящный и надежный молниеотвод! Надеемся, нижеследующий видеоролик будет Вам полезен.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: