Установка регуляторов теплого водяного пола

Как выбрать терморегулятор для электрического и водяного теплого пола

Электрические и водяные системы напольного обогрева неспособны самостоятельно поддерживать заданную температуру в помещениях частного дома. Хозяин приспосабливается регулировать мощность котла или греющих контуров вручную, добиваясь комфортной температуры воздуха. Чтобы организовать автоматическое управление микроклиматом, нужны терморегуляторы для теплого пола (ТП), устанавливаемые в каждой комнате. Цель публикации – описать существующие виды термостатов, способы установки и схемы подключения регулирующих устройств.

  • 1 Как работает терморегулятор
  • 2 Термостаты для электрических и водяных ТП – в чем разница
  • 3 4 вида регуляторов теплого пола
  • 4 Советы по выбору прибора
  • 5 Монтаж и подключение терморегулятора
  • 6 Напоследок о настройке температуры

Как работает терморегулятор

Выносной термостат напольного отопления – это автоматический выключатель, который разрывает либо замыкает электрическую цепь после достижения установленной пользователем температуры. В результате нагрев прекращается или же возобновляется. По принципу работы регуляторы теплого пола делятся на 2 вида:

  1. Механические с термодатчиком в виде биметаллической пластины. От нагрева данный элемент изгибается и в определенный момент разрывает цепь. Затем пластинка охлаждается, выпрямляется и снова замыкает контакты.
  2. В электронных (релейных) регуляторах датчиком температуры выступает терморезистор, меняющий сопротивление электрическому току в зависимости от нагрева. Микросхема-контроллер фиксирует это изменение и отдает команду реле, обмотка размыкает контакты, цепь разрывается.

Устройство простейшего терморегулятора с биметаллической пластиной

Справка. Электронные приборы оснащаются собственным источником (батарейками) либо подключаются к домовой сети. Простейшие механические терморегуляторы работают без внешнего электропитания. Это не является преимуществом, поскольку для управления водяными ТП все равно требуется электричество.

Теперь поясним, как с помощью комнатных термостатов реализуется автоматическое регулирование теплого пола. Электрические греющие контуры (кабельные секции, инфракрасная пленка) работают так:

  1. Установленный в помещении термостат подключается в разрыв главной силовой линии электропитания. Пока в комнате холодно, цепь замкнута.
  2. Домовладелец настраивает на приборе желаемую температуру, включается нагрев. Когда она достигает требуемого значения, срабатывает термодатчик, цепь размыкается, силовая линия обесточивается.
  3. После охлаждения на 0.5–1 градус подача электропитания возобновляется, нагрев продолжается. Кстати, разница между температурами включения/выключения зовется гистерезисом.

Термоэлектрические приводы, работающие с комнатными термостатами, накручиваются на клапаны распределительного коллектора

Принцип работы терморегулятора для водяного теплого пола такой же. Только реле размыкает цепь питания термоэлектрического привода (иначе – сервопривода). Он стоит на распределительном коллекторе ТП и закрывает/открывает подачу теплоносителя в греющий контур.

Сервоприводы ставятся на каждую петлю, подключаются к отдельным регуляторам, расположенным в разных комнатах. Как работает автоматизированная система водяного напольного отопления, смотрим на видео:

Термостаты для электрических и водяных ТП – в чем разница

На самом деле разницы никакой нет, в обоих случаях терморегулятор выполняет одну функцию – включает либо выключает нагрев, прерывая подачу напряжения к исполнительному элементу – нагревательному кабелю или сервоприводу. Но для работы с электрическими полами подойдет не каждый прибор, например, чисто механическое устройство применять нельзя. Поясним почему:

  1. Нагрев электрического ТП контролирует выносной датчик, расположенный в полу между петлями резистивного кабеля. Он позволяет ограничить максимальную температуру напольного покрытия, защитить кабельную секцию от перегрева.
  2. В механических терморегуляторах стоит пластина, реагирующая на изменение температуры воздуха. Прибор не рассчитан на подключение внешнего термодатчика, поэтому «не видит» степень нагрева стяжки пола.
  3. Пленочный теплый пол работает аналогичным образом. Когда требуется регулировать температуру воздушной среды, выбирается релейный термостат, оснащенный внутренним датчиком и клеммами для подключения внешнего.

Электронагревательные ТП всегда монтируются с датчиком-терморезистором, измеряющим температуру пола

Примечание. Контроллер терморегулятора одновременно обрабатывает сигналы напольного и встроенного датчика. Когда 1 из 2 терморезисторов показывает достижение установленного порога температуры, электрический подогрев выключается.

Для регулировки водяных греющих контуров применяется воздушный датчик теплого пола, выносной измеритель ставится по желанию или в случае необходимости. Например, для контроля краевых зон, которые сильно охлаждаются. Температуру теплоносителя ограничивает регулирующая арматура на коллекторе – термоголовки RTL либо смесительный клапан с накладным/погружным датчиком.

4 вида регуляторов теплого пола

По функциональности терморегуляторы можно условно разделить на 4 разновидности:

  • механические, работающие по температуре воздуха;
  • релейные с минимальным набором функций и встроенным воздушным датчиком;
  • электронные устройства на 2 термодатчика с дисплеем и возможностью программирования;
  • то же, с wi-fi модулем дистанционного управления.

Дополнение. По способу подключения терморегуляторы делятся на проводные и беспроводные. В первом случае прибор присоединяется к цепи электропитания напрямую, во втором – через специальный релейный блок с ресивером – приемником радиосигналов.

Любой из перечисленных термостатов может иметь 2 или 3 коммутационных контакта. В чем разница:

  1. 2-контактный регулятор «умеет» только разрывать цепь (отключать питание) при достижении температурного порога.
  2. Универсальный 3-контактный прибор одновременно замыкает первую линию и размыкает вторую.

Последний пункт требует разъяснения. Если терморегулятор управляет сервоприводом типа NO (нормально открытый), то для перекрывания теплоносителя нужно наоборот подать напряжение, а не отключить. Значит, при достаточном нагреве помещения цепь должна замыкаться, провода подключаются к клеммам №2 и №3 термостата.

Термоэлектрический привод для водяного пола типа NC нормально закрыт при отсутствии напряжения. Чтобы прекратить подачу теплоносителя в контур ТП, регулятор должен обесточить сервопривод. Тогда кабель присоединяется к контактам №1 и №3, как показано на схеме.

Когда реле срабатывает, третий контакт замыкается со вторым, а линия на первой клемме обесточивается

Простейший механический термостат способен лишь поддерживать температуру помещения на одном заданном уровне, работая в паре с сервоприводом NC теплого водяного пола. Более продвинутые электронные регуляторы имеют множество дополнительных функций:

  • возможность подключения 2 температурных датчиков;
  • 3 коммутационных контакта;
  • режим защиты от замерзания – включение нагрева в случае охлаждения дома до +3…5 °C;
  • регулирование величины гистерезиса;
  • сенсорный дисплей управления, показывающий время, дату и контролируемую температуру;
  • термостат программируется на сутки/неделю вперед, количество событий в день – 6 и более;
  • индикация неполадок, самодиагностика, самообучение;
  • встроенный модуль wi-fi для управления термостатом через приложение смартфона.
Читайте также:
Как использовать битый кирпич на даче: идеи и советы

Первые 3 функции имеются практически во всех релейных терморегуляторах. Если хотите получить больше, придется купить цифровую модель прибора.

Справка. Цена электронного термостата с кнопочным управлением BasicPlus от бренда Danfoss составляет 20 евро. Аналогичный прибор с ЖК-дисплеем обойдется уже в 40 €, программируемая модификация WT-P стоит 54 €. Китайские аналоги в 2–3 раза дешевле.

Советы по выбору прибора

Мы считаем, устанавливать механические терморегуляторы на теплые полы бессмысленно. Эти устройства несколько устарели, число функций ограничено, точность поддерживаемой температуры оставляет желать лучшего. Приборы можно использовать в подсобных либо технических помещениях, где надо поддерживать +15…18 °C круглосуточно.

Тип микропроцессорного термостата выбираем в зависимости от способа нагрева, условий эксплуатации и собственных пожеланий:

  1. Регулятор для электрического пола лучше брать вместе с нагревательным кабелем (пленкой) и датчиками у одного производителя. Например, фирмы Devi, Caleo и «Теплолюкс» продают собственные регулирующие устройства.
  2. Если вам приходится покупать термостат для электрических ТП отдельно, следует выбрать любой двухконтактный прибор, оснащенный клеммами подключения внешнего датчика. Обратите внимание на показатель максимальной мощности, которую способен коммутировать регулятор (обычно лежит в пределах 2…4 кВт).

Пример технических характеристик регуляторов бренда «Теплолюкс»

  • Под водяные теплые полы лучше взять универсальный (3-контактный) терморегулятор, внешний температурный датчик – по необходимости. Коммутируемая мощность роли не играет, поскольку сервоприводы потребляют 1…3 Вт электричества.
  • Количество дополнительных «наворотов» зависит от ваших потребностей и кошелька. Но если нужна реальная экономия энергоносителей, рассматривайте программируемые модели, включающие отопление по графику. В рабочее время либо ночью температуру в доме можно понизить до 18…20 °C.
  • Установка терморегуляторов предусматривается в каждой комнате. Значит, придется оттуда тянуть провода к гребенке ТП, где располагаются сервоприводы водяных контуров. Подобная «электрификация» неуместна в квартирах со свежим дизайнерским ремонтом. Решение: установите возле коллектора коммутационный блок с ресивером, а в помещениях – беспроводные термостаты на батарейках.

    Справка. Обычно блоки-коммутаторы имеют 1–2 релейных выхода для подключения циркуляционного насоса либо горелки котла. Коммутационное устройство компании Danfoss стоит около 100 евро, беспроводной регулятор TP5001A-RF – 82 €, ресивер типа RX на 3 термостата – 95 €.

    Монтаж и подключение терморегулятора

    Перед установкой внимательно прочитайте инструкцию по эксплуатации прибора. Обычно там содержатся следующие указания по монтажу:

    • высота термостата над уровнем пола – 1.5…1.7 м;
    • не размещайте регулятор с воздушным датчиком вблизи источников тепла или холода – радиаторов отопления, кондиционеров, вентиляционных отверстий;
    • технологический отступ от оконных и дверных проемов – 1 м (минимум);
    • соблюдайте максимальное расстояние между терморегулятором и распределительным коллектором водяных ТП (длина кабеля указывается в инструкции);
    • внешний датчик располагается ровно посередине между петлями напольного обогрева на расстоянии 500 мм от стены;
    • термодатчик пола монтируется внутри гофротрубы, он должен легко вытягиваться после заливки стяжки.

    Приборы накладного типа прикручиваются напрямую к стене, проводка закладывается в штробах. Под встраиваемые термостаты делается углубление, ставится обычный подрозетник.

    Совет. Для присоединения регулятора используйте двухжильный медный кабель сечением 0.75 мм². Схема подключения контура электрического теплого пола с наружным датчиком выглядит так:

    Если кабельная нагревательная секция потребляет больше мощности, чем способен коммутировать терморегулятор, нужно задействовать в схеме модульный контактор. Указанный исполнительный элемент устанавливается на стандартную DIN-рейку.

    Здесь терморегулятор подает управляющий сигнал на контактор, а тот размыкает силовую линию

    Некоторые версии термостатов имеют контакт для подсоединения таймера. Такое решение позволяет 1 раз в сутки снижать температуру в комнате на 5 градусов, не приобретая дорогой цифровой модели прибора. Схема с таймером представлена ниже.

    Латинская буква L на схеме обозначает фазный провод, N – нулевой (нейтраль)

    Перейдем к водяным теплым полам. Простейший способ – подключить терморегулятор к сервоприводу напрямую (последовательно). Только сначала выясните тип привода, «нормально открытый» нужно стыковать с замыкающим контактом прибора, «нормально закрытый» – с размыкающим. Зачастую производители ставят на клеммах соответствующую маркировку – NO или NC. Контакт COM – общий.

    Чтобы реализовать многозональное напольное отопление частного дома с беспроводными терморегуляторами, воспользуйтесь следующей принципиальной схемой. Здесь не указаны номера клемм и другие подробности, поскольку оборудование разных производителей отличается маркировкой.

    Справка. Коммутационные панели, ресиверы-приемники и модули wi-fi выпускают многие известные производители – Legrand, Danfoss и прочие. Как функционирует связка термостат – коммутационный блок, рассказывается на видео.

    Напоследок о настройке температуры

    Чтобы настроить каждый терморегулятор теплого пола и проверить работоспособность системы в целом, следует включить нагрев и выставить на всех приборах желаемую температуру. Учтите, дом нужно прогреть полностью. Оптимальный режим работы котла – 60 °C, если теплогенератор начнет «тактовать» (часто отключаться и стартовать), лучше снизить мощность.

    Суть настройки заключается в подборе комфортной температуры во всех жилых помещениях. Показания дисплея термостата не всегда соответствуют нашим ощущениям, так что установки придется корректировать в процессе эксплуатации. Отдельный вопрос – программирование нагрева по графику, данная процедура описывается в инструкции конкретного прибора.

    Терморегулятор для водяного теплого пола – виды и принцип управления, рекомендации по эксплуатации и выбору

    Обустройство отопления дома теплыми полами, в условиях нашего климата становится все более популярным. В данной системе обязательно должен присутствовать терморегулятор для управления водяного теплого пола, поскольку данная отопительная система очень требовательна к степени нагрева.

    Независимо от того, является обогрев с помощью водяного пола основным или вспомогательным способом поддержания приемлемых температурных условий в помещении, к нему предъявляются специфические требования.

    Дело в том, что у него должна быть ограничена максимальная температура. В любом помещении всегда присутствует пыль и располагается она, в соответствии с законами физики, на полу. Установлено, что при нагревании поверхности теплого пола, образуются конвекционные потоки подогретого воздуха.

    Если нагрев превысит 30 градусов по Цельсию, то потоки воздуха поднимают пыль, и нам приходится этим дышать. Данное обстоятельство не благоприятно сказывается на общее состояние организма человека, вследствие чего стали применяться терморегуляторы для поддержания нужной температуры.

    Для контроля температурного режима, осуществляется подключение терморегулятора для водяного пола, который относится к управляющим приборам.

    Устройство и принцип действия

    Удобство пребывание в помещениях во многом зависит от применяемой системы отопления. Контроль над температурой водяного теплого пола производится с использованием специальных приборов – терморегуляторов.

    Применяются множество конструкций таких систем, но в большинстве случаев в них используется всего несколько принципиально различных способов регулировок.

    Смотреть видео — процесс настройки

    Но, прежде чем рассмотреть принцип работы и устройство терморегуляторов, нужно понять объект регулирования.

    Что такое разводка отопления

    Обогрев помещения водяным полом может осуществляться различными способами. Одним из них является использование тепла подогретой воды, выполняющей роль теплоносителя. Передача производится по трубам. Раньше в отоплении в основном использовали стальные трубы, сейчас им на смену пришли современные из пластиковых материалов.

    Греющий контур может располагаться вдоль стен в виде радиаторов, а может располагаться под поверхностью пола, нагревая его и воздух в помещении.

    Терморегулятор для радиатора отопления: установка, принцип работы, характеристики, критерии выбора.

    Горячая вода или антифриз нагревается в котле, после чего, с использованием циркуляционного насоса подается в греющий контур водяного пола.

    Проходя по его трубам, теплоноситель отдает тепло в закрытое окружающее пространство, нагревая поверхность. Охлажденная жидкость возвращается в систему котельной. В зависимости от температуры «обратки» в узле подмеса производится ее подогрев, либо охлаждение подмешиванием более холодной воды из бака.

    И вот здесь и устанавливается терморегулятор, реагирующий на величину нагрева обратного потока и дающий команду на выполнение того или иного действия.

    В контурах с теплыми полами, который подключаются отдельным контуром, терморегулятор устанавливается для каждого из них, поскольку все они имеют собственный тепловой режим. А контуры радиаторного отопления нагреваются до температуры, практически вдвое выше, чем для теплого пола.

    Как работает принцип регулирования температурного режима

    Основными элементами регулировки нагрева является сервоприводы, датчики температуры и терморегуляторы. Такой состав оборудования позволяет производить регулировку температуры водяного теплого пола бесступенчато в непрерывном автоматическом режиме. Происходит это следующим образом:

    1. Если с термодатчика приходит сигнал о недостаточной температуре, сервопривод открывает вентиль и в контур отопления поступает больше горячей воды.
    2. При перегреве теплоносителя открывается вентиль подмеса охлажденной воды, снижая степень нагрева в контуре.
    3. Однако возможна регулировка и в ручном режиме путем установки крана в определенное положение. Но такой способ требует постоянного визуального контроля, поскольку факторы, от которых зависит режим отопления, в течение суток изменяются неоднократно. При относительной дешевизне таких устройств, они очень неудобны в эксплуатации, поскольку за каждым имением условий в помещении требуется вмешательство в работу отопления.

    Параметры регулировки

    Смотреть видео — регулировка мощности блока термодатчика

    1. Степень нагрева напольного покрытия. В таком случае датчик нагрева устанавливается в непосредственной близости от него. Такое устройство теплого пола лучше всего подходит для небольших помещений и маломощных отопительных контурах, которые используются только в качестве вспомогательных, в частности для теплого пола.
    2. Температура воздуха в помещении – при такой схеме контроля используются датчики, вмонтированные непосредственно в корпусе терморегулятора. Корректной работы такого прибора можно добиться только, если выполняются все требования к утеплению обогреваемого здания. В противном случае эффективной работы отопления добиться сложно – значительные потери энергии неизбежны. Правильно построенный дом с обширной отопительной системой и терморегулятором может дать до 30% экономии ресурсов.
    3. Комбинированные системы регулирования, при которой датчики температуры водяного теплого пола устанавливаются и в отапливаемом помещении и на системе узла подмеса. Параметры настраиваются из соображений максимально комфортной температуры в доме. Такая аппаратура с терморегулятором используется в обширных помещениях. Для управления могут использоваться оба датчика одновременно или один из них.

    Виды терморегуляторов

    Смотреть видео — обзор датчиков для водяного пола

    Для создания этих приборов применяются различные принципы и конструктивные решения. Давайте рассмотрим их.

    1. Механический терморегулятор для водяного теплого пола представляет собой наиболее простой, надежный и долговечный прибор. Регулировка прогрева воздуха осуществляется поворотной рукояткой, шкала температур наносится на прочный пластиковый корпус.

    Некоторые производители устанавливают на терморегулятор клапан открыто — закрыто. Недостатком этого аппарата является необходимость постоянного контроля – он работает только в режиме ручной регулировки.

    Отдельные производители допускают серьезные неточности в градуировке шкалы температур, поэтому необходимо производить дополнительную проверку прибора с использованием точного поверенного термометра.

    1. У сенсорного дистанционного регулятора температуры теплого пола управление и регулировки выполняются (узнайте более подробно) с соответствующей панели или дистанционного пульта. Эти модели обеспечивают более точный и надежный контроль нагрева, но в ряде случаи эти показатели зависят от производителя. Не стоит основным параметром выбора рассматривать цену на прибор, в ряде случаев этот подход не оправдывается.

    1. Электронные терморегуляторы по функционалу мало чем отличимы от сенсорных приборов, но выделяются более удобным дисплеем.
    2. Программируемые терморегуляторы удобны возможностью самостоятельно составлять программы управления режимом отопления.

    На таком приборе возможны настройки на сутки, на неделю, а также возможность работы в автоматическом режиме с поддержкой экономичного режима на время отсутствия людей в доме. Это позволяет экономить на энергоресурсах до трети расходов.

    Такие устройства позволяют в автоматическом режиме поддерживать температуру в отдельных контурах сложно разветвленной системы отопления с водяным теплым полом. К недостаткам прибора можно отнести высокую стоимость и сложность регулировок. Перед вводом в действие нужно тщательно изучить инструкции по подсоединению, монтажу и настройкам, ошибки влекут за собой выход из строя сложной дорогостоящей системы.

    1. Датчики с радиоуправлением можно считать эксклюзивом из-за их высокой стоимости. При их использовании низковольтные управляющие схемы отсутствуют, поскольку регулировки производятся по радиосигналу. Каждый прибор оснащается радиопередатчиком и радиоприемником сигналов, управляющих работой сервоприводов. Такие приспособления, возможно, уместны в элитных коттеджах для регулировки температуры теплого водяного пола, если владельцы не хотят иметь пучки проводов цепей управления.

    Как отрегулировать температуру в доме – 3 способа и определение оптимального режима

    Основная задача поддержания температурного режима – создание комфортных условий для проживания при условии оптимального расходования ресурсов. Этого можно добиться несколькими способами.

    Первый из них заключается в установке оптимальной степени нагрева теплоносителя в контурах теплых полов. Второй – в полном прекращении его поступления в него.

    Самый простой способ заключается в использовании для греющего контура труб с максимальной рабочей температурой 90-95 градусов. Это позволяет установить в систему циркулярный насос с терморегулятором, а также клапан обратного хода.

    Место установки насоса – труба-обратка, а температура теплоносителя в этом месте составляет не более 70-80 градусов по Цельсию. Если разогрев теплоносителя достигает критичных значений, термостатом отключается насос и отопление переходит в режим ожидания.

    По мере остывания пола, циркулярный насос снова включается, подавая в трубопровод контура новую дозу горячей воды. Практика показывает, что такой способ наиболее эффективен и надежен для устойчивой работы отопления с теплым полом.

    Второй способ регулировки степени нагрева предполагает включение в систему трехходового вентиля или смесительного клапана. При таком подходе через трехходовой вентиль производится подмешивание охлажденной воды из обратки к горячей подаче. То есть, максимальная температура горячей воды из котла, понижается добавлением охлажденной.

    Если используется 3-х ходовой вентиль, регулировку можно производить вручную или через сервопривод. Клапан смешивающий регулирует температуру носителя тепла по заранее введенной величине контрольного показателя.

    Третий способ регулировки нагрева носителя тепла в системе обогрева жилья состоит в использовании узла подмеса. Такое устройство можно изготовить из следующих компонентов:

    • вентиль 3-х ходовой;
    • насос циркуляционный;
    • перемычка байпаса;
    • градусник;
    • термостатическая головка ;
    • реле контроля максимальной температуры.

    Учитывая состав применяемых компонентов, узел регулировки степени нагрева в системе обогрева получается довольно не дешевым.

    Но изменение температуры в нем происходит очень быстро, потому, что оно производится подмешиванием к основному потоку теплоносителя воды из трубы-обратки. При этом происходит автоматическое уменьшение интенсивности горения в котле.

    В соответствии с установленными регулировками режим потребления топлива всегда является оптимальным. Количество узлов в объединенной системе может быть любым, и каждый будет работать автономно в соответствии с установленными настройками.

    Таким образом, можно поддерживать более высокую температуру воздуха, например, в детской комнате и одновременно более низкую в спальне взрослых представителей семейства. Особенно эффективен такой узел для управления температурой в устройстве водяных полов.

    Для применения такого способа регулировки есть только одно требование – вся отопительная схема должна быть устроена по европейским требованиям. Температура горячей воды из котла должна быть не выше 67 градусов.

    И в теперь рассмотрим методику регулировки теплового и гидравлического режима с использованием термостата. Его устанавливают в помещении, и настройка производится путем установки на этом приборе нужной температуры для данной конкретной точки. Управление нагревом производится сервоприводом на конкретном контуре.

    Автоматическое регулирование напольного отопления. Часть 1

    Задачи автоматического регулирования

    Необходимость и важность автоматического регулирования системой напольного отопления лучше всего доказывать на конкретном примере по принципу «от противного».

    Предположим, имеется помещение, оборудованное системой тёплого пола с расчётным удельным тепловым потоком q = 60 Вт/м 2 . Этот тепловой поток рассчитан при расчётной температуре наружного воздуха tн0 = –28 °С (Санкт-Петербург). Конструкция «пирога» пола показана на рис. 1.


    Рис. 1. Конструкция тёплого пола

    Для определения требуемой температуры теплоносителя можно воспользоваться расчётным модулем программы VALTEC.PRG версии 3.1.3 (рис. 2). Средняя температура теплоносителя составляет tт = 31,5 °C. При перепаде температур в петлях Δt = 5 °C термоголовка насосно-смесительного узла будет установлена на температуру 31,5 + (5/2) = 34 °С.

    Допустим, никакой регулировки кроме поддержания температуры теплоносителя в насосно-смесительном узле система не имеет. При наружной температуре tн0 = –28 °С пол действительно будет отдавать q = 60 Вт/м 2 , поддерживая температуру воздуха в обслуживаемом помещении tв0 = 20 °С. Однако с повышением температуры наружного воздуха картина будет меняться.


    Рис. 2. Результат расчёта температуры теплоносителя

    Температуру воздуха в помещении при изменившейся температуре наружного воздуха tвi нетрудно определить из уравнения теплового баланса:

    где tнi – текущая температура наружного воздуха, °С

    Удельный тепловой поток можно определить по формуле:

    Текущая температура пола составит:

    Результаты расчёта сведены в таблицу 1.

    Таблица 1. Температура воздуха, удельный тепловой поток и температура воздуха при различной температуре наружного воздуха

    Температура наружного воздуха, °С

    Температура внутреннего воздуха, °С

    Удельный тепловой поток от тёплого пола, Вт/м2

    Температура пола, °С

    Как видно из приведённой таблицы, отсутствие регулирования напольным отоплением приводит в межсезонье к чрезмерному перегреву воздуха в помещении, а также к повышению температуры пола.

      Можно, конечно, при резких изменениях температуры открывать форточки, но отапливать за свой счёт вселенную навряд ли кто захочет. Можно также бегать к насосно-смесительному узлу, чтобы перенастроить уставку термоголовки, однако, такая беготня совершенно не вяжется с понятием «комфорта». Таким образом, можно сформулировать следующие основные задачи автоматического регулирования напольным отоплением:
    • поддержание внутреннего климата в помещении в комфортных рамках;
    • экономия энергоресурсов;
    • исключение излишнего вмешательства пользователя в работу системы.

    Комнатные термостаты

    Самым простым и доступным решением по регулированию системы напольного отопления является использование комнатных термостатов совместно с электротермическими приводами, управляющими термостатическими клапанами коллекторного блока.

    Принцип работы термостата элементарен: пользователем задаётся желаемая температура внутреннего воздуха (уставка). При отклонении температуры воздуха в помещении от уставки на величину гистерезиса (разница между температурами включения и выключения), происходит переключение контактов реле, через которые на сервопривод подаётся электропитание. В зависимости от схемы подключения и типа сервопривода (нормально открытый или нормально закрытый), происходит либо открытие, либо закрытие термостатического клапана, регулирующего подачу теплоносителя в петлю тёплого пола.

    Термостат на схеме 1 рисунка 3 при повышении температуры разомкнёт питание нормально закрытого сервопривода и там самым перекроет подачу теплоносителя в петлю. На схеме 2 рисунка 3 термостат подключён к нормально открытому приводу. При повышении температуры воздуха в помещении термостат подаст питание на сервопривод, также перекрыв петлю.


    Рис. 3. Принцип работы комнатного термостата и сервопривода

    В номенклатуре VALTEC имеется несколько видов комнатных термостатов.

    Термостат комнатный проводной с датчиком температуры пола VT.AC602


    Рис. 4. Комнатный термостат VT.AC602

    Термостат VT.AC602 (рис. 4) кроме встроенного датчика температуры воздуха имеет выносной датчик, который встраивается в конструкцию стяжки тёплого пола в гофрокожухе.

    При одновременном подключении двух датчиков встроенный датчик температуры является рабочим, а выносной – предохранительным (заводская настройка). То есть, при превышении предельной температуры на выносном датчике происходит отключение нагрузки, независимо от показаний встроенного датчика. Эта функция особенно полезна при покрытиях пола, чувствительных к повышению температуры (например, паркет).

    При выборе в качестве рабочего выносного датчика температуры пола, встроенный датчик температуры воздуха становится предохранительным.

    Переключение рабочих датчиков производится на шестиполюсном джампере, расположенном под лицевой панелью (рис. 5).


    Рис. 5. Схема переключения датчиков

    К термостату подводится питание 220 В, которое он при понижении температуры воздуха ниже уставки передаёт на сервопривод (рис. 6).

    Такая схема предусматривает работу только с нормально закрытыми сервоприводами, а также исключает возможность использования зонального коммуникатора VT.ZC8.


    Рис. 6. Схема подключения термостата VT.AC602

    Термостат комнатный проводной VT.AC701
    Термостат VT.AC701 (рис. 7) работает от двух батареек ААА 1,5 В и имеет жидкокристаллический дисплей, который в рабочем режиме отражает текущую температуру воздуха в помещении. Он выполнен в настенном исполнении, то есть крепится непосредственно на стену и не требует устройства гнезда с монтажной коробкой.


    Рис. 7. Термостат комнатный VT.AC701

    Требуемая температура (уставка) задаётся с помощью двух клавиш на передней панели. Термостат может работать как с нормально открытыми (НО), так и с нормально закрытыми (НЗ) сервоприводами с напряжением 220 В и 24 В. Сервопривод подключается в разрыв цепи питания (рис. 8).


    Рис. 8. Схемы подключения термостата VT.AC701

    Хронотермостат комнатный проводной с датчиком температуры пола VT.AC709
    Давайте представим реальный рабочий день обычной семьи. Утром, когда домочадцы поднимаются с постелей, завтракают и собираются на работу, учебу и т. п., температура воздуха в помещениях должна поддерживаться на уровне 20–22 °С. Затем квартира остаётся на попечение кошек и собак, и вполне достаточно, чтобы температура не опускалась ниже 14–15 °С. Вечером семья возвращается домой, и до тех пор, пока все не улягутся спать, нужно снова поддерживать 20 °С. Наконец семья уснула.

    Для нормального здорового сна температура воздуха в помещении не должна превышать 17 °С (рис. 9). Получается, что жильцу несколько раз в день придётся подходить к комнатному термостату и менять его настройку. Но даже в этом случае комфортная температура наступит не сразу. В зависимости от тепловой инерционности конструкций и использованного отопительного оборудования тепловой эффект проявится лишь через 20–30 минут, а то и позже.


    Рис. 9. Пример графика температуры воздуха в помещении

    Можно, конечно, ничего не регулировать, а по старинке открывать и закрывать форточку, установив на термостате стабильные 20 °С. Владельцы частных домов, коттеджей и квартир, оборудованных теплосчётчиками такому решению уже сейчас не обрадуются. Ведь платить за «открытую форточку» и нагрев «мирового пространства» им приходится из своего кармана. Тем, у кого теплосчётчики ещё не установлены, можно этот метод использовать, если им нравится бегать к форточкам и хлюпать носом от постоянных сквозняков.

    Гораздо разумнее поступит тот, кто вместо обычного термостата установит электронный хронотермостат VT.AC709 (рис. 10).


    Рис. 10. Хронотермостат проводной VT.AC709

    Хронотермостат позволяет программно задавать режимы отопления в разное время рабочих суток и выходных дней. Для этого каждые сутки условно делятся на шесть периодов, время начала каждого из которых задаётся пользователем. То есть, при пятидневной рабочей неделе надо запрограммировать шесть периодов для пяти суток (рабочих) и 2 х 6 = 12 периодов для выходных дней. Для каждого из назначенных периодов задаётся требуемая температура воздуха или пола (при назначении в качестве рабочего выносного датчика).

    В любой момент времени хронотермостат позволяет вмешаться в программу и перейти на режим ручного управления. Например, кто-то пришёл с работы раньше обычного. Перейдя на режим временного ручного управления, он назначает нужную температуру, и прибор будет её поддерживать до конца текущего программного периода, игнорируя программную настройку, а затем автоматически вернётся к работе по программе.

    В обычных комнатных термостатах гистерезис (разница между температурами размыкания и замыкания контактов) является фиксированной величиной и составляет, как правило, 1 °С.

    Кого-то это устраивает, а кому-то желательно поддерживать температуру более точно. Кому-то, наоборот, хочется, чтобы включение/выключение отопительного контура происходило реже. В хронотермостате VT.AC709 гистерезис можно настраивать в диапазоне от 0,5 до 10 °С.

    Многие владельцы обычных комнатных термостатов замечают, что температура воздуха, фиксируемая термостатом, часто отличается от температуры, показываемой обычным комнатным термометром. Причин тому может быть несколько: разная температура в разных точках помещения, нагрев прибора при работе, неверная калибровка и т.п. Приходится держать в уме некую поправку, чтобы постоянно корректировать настройку на эту величину. Хронотермостат VT.AC709 имеет режим ручной калибровки встроенного датчика, поэтому поправка будет всегда учитываться автоматически.

    Кроме всего прочего, хронотермостат VT.AC709 позволяет включить функцию защиты от замерзания (рис. 11). Даже при выключенном термостате (режим OFF) снижение температуры воздуха ниже 5 °С подаст напряжение на сервопривод, обеспечив циркуляцию теплоносителя.


    Рис. 11. Информация, отображаемая на экране и назначение кнопок управления VT.AC709 (синим цветом показано значение заводских настроек)

    Выносной датчик температуры пола встраивается в стяжку тёплого пола и служит в качестве предохранительного. При превышении предельно допустимой температуры пола, независимо от текущей температуры внутреннего воздуха, термостат подаст команду на отключение отопления (рис. 12 а и 12 б).


    Рис. 12 a. Схемы подключения хронотермостата VT.AC709 к сервоприводам 220 В


    Рис. 12 б. Схемы подключения хронотермостата VT.AC709 к сервоприводам 24 В

    Хронотермостат комнатный проводной с датчиком температуры пола VT.AC710
    В отличие от мдели VT.AC709, хронотермостат VT.AC710 (рис. 13) имеет автономное питание от двух батареек АА по 1,5 В. Выносного датчика температуры пола у этого прибора нет.


    Рис. 13. Хронотермостат VT.AC710

    В соответствии с введённой недельной программой хронотермостат управляет напольным отоплением, поддерживая в помещении один из двух предварительно заданных режимов («Комфорт» и «Эконом»).

    Каждый из семи дней недели разбит на 48 временных зон (по 30 минут каждая), что позволяет пользователю при программировании хронотермостата обеспечить оптимальный климатический режим в помещениях.

    Для удобства оперативного управления климатической системой хронотермостат имеет кнопку ждущего режима, которая позволяет при необходимости временно отключить работу программы и действовать по задаваемому пользователю командам.

    Состояние реле (замкнуто / разомкнуто) отображается светодиодным индикатором и надписью на жидкокристаллическом дисплее (System ON / System OFF; рис. 14).


    Рис. 14. Схема подключения хронотермостата VT.AC710

    Хронтермостат комнатный беспроводной VT.AC707
    Все ранее рассмотренные комнатные термостаты соединяются с сервоприводом с помощью провода, что не всегда удобно, а в ряде случаев просто невозможно. В этом случае на помощь придёт беспроводной хронотермостат VT.AC707 (рис. 15).


    Рис. 15. Хронотермостат беспроводной VT.AC707

    В его комплект входит приёмник, который принимает управляющий сигнал от хронотермостата, установленного в обслуживаемом помещении и по проводной схеме передаёт его непосредственно на сервопривод коллекторного блока. Сигнал к приёмнику передаётся по радиоканалу на разрешенной частоте 433 МГц. Приёмник, как правило, располагается рядом с сервоприводом в коллекторном шкафу.

      Прибор снабжён сенсорными кнопками управления и позволяет выполнять следующие функции:
    • поддержание температуры воздуха в обслуживаемом помещении на уровне, заданном пользователем (программно или вручную);
    • дистанционная передача управляющего сигнала на расстояние до 30 м;
    • суточное и недельное программирования температурных режимов в помещении (шесть режимов в сутки);
    • поддержание режима защиты от замерзания;
    • настройка разницы между температурами размыкания и замыкания контактов;
    • калибровка показаний встроенного датчика температуры воздуха по данным поверочного термометра;
    • экранная индикация режимов работы, времени, температуры воздуха в помещении и заданной для текущего режима температуры воздуха;
    • подсветка дисплея;
    • блокировка настроек для защиты от несанкционированного вмешательства.

    Хронотермостат двухконтурный проводной VT.AC711
    Система напольного отопления достаточно часто применяется в качестве дополнения к радиаторному отоплению. В случае использования такой комбинированной схемы, управление отоплением тоже должно быть ком- бинированным. Это значит, что совместная одновременная работа двух систем в межсезонье (при температуре наружного воздуха от –10 до +8 °С) не требуется.

    Тёплый пол вполне и сам справится с этой задачей. Для управления комбинированной системой отопления идеально подходит двухконтурный хронотермостат VT.AC711 (рис. 16).


    Рис. 16. Хронотермостат двухконтурный VT.AC711

    Этот хронотермостат выполняет такие же функции, как и VT.AC709, но управляет уже не одним, а двумя контурами отопления при помощи дополнительного реле. В меню настроек такого термостата введена величина dT, которая определяет зону температур выше уставки, при которой включено только одно реле (рис. 17).


    Рис. 17. Схема работы хронотермостата VT.AC711

    На термостате задаётся две величины: первая – уставка самого термостата (например 20 °С) и вторая величина – dT (например 3 °С), которая настраивается один раз и применима при любых значениях уставки. Если фактическая температура воздуха в помещении ниже уставки на 0,5 °С (половинное значение гистерезиса), то это означает, что в помещении холодно и необходимо включить и радиаторное и напольное отопление. Такая ситуация возникает, как правило, в пиковые периоды холода, когда на улице устанавливается температура, близкая к зимней расчётной (для Санкт-Петербурга это –28 °С).

    При возрастании температуры выше уставки (20 + 0,5 = 20,5 °С) реле, управляющее радиатором, отключается. Таким образом при оптимальном диапазоне температур будет выключен радиатор, но тёплый пол для обеспечения комфорта в помещении останется включённым. Дальнейшее увеличение температуры воздуха до значения 20 + dT + 0,5 = 23,5 °С приведёт к выключению и тёплого пола (рис. 18).


    Рис. 18. Схемы подключения хронотермостата VT.AC711

    Остывание помещения сначала запустит тёплый пол при температуре 20 + dT – 0,5 = 22,5 °С, а при понижении температуры до значения 20 – 0,5 = 19,5 °С подключится и радиаторное отопление.

    По умолчанию, значение dT задана равной 3 °С, однако задавать его рекомендуется, исходя из особенностей конкретной системы и тепловой инерционности помещения.

    Таблица 2. Основные технические характеристики комнатных термостатов

    Схемы подключения терморегулятора теплого пола — полезные советы и правила выбора.

    Терморегуляторы, предназначенные для управления отоплением электрическими теплыми полами, имеют специальное обозначение.

    Не путайте их с другими популярными моделями, которые выпускаются для работы с газовыми котлами или водяным отоплением через коллектор.

    На обратной стороне устройства между двух клемм, ищите изображение в виде змейки (контакты L1 и N1).


    Именно сюда подключается кабель теплого пола или электрического мата.

    К концу L1 — центральная жила кабеля, к N1 – оплетка.

    Выносной температурный датчик, предотвращающий перегрев теплых полов и контролирующий нагрев, заводится на колодки с изображением сенсора (NTC).


    Полярность подключения проводов датчика не важна. Подсоединяйте их в любой последовательности.

    Обратите внимание, что температура непосредственно на выносном датчике всегда будет выше, чем температура в комнате, которую на своем табло показывает регулятор.

    Это связано с глубиной залегания датчика в стяжку.

    На дисплеях электронных приборов можно увидеть оба параметра, а вот в механических устройствах с колесиком, зачастую по окружности даже не прописывают градусы, а указывают только цифры 1-2-3 и т.д.

    При пяти цифрах одно деление соответствует примерно 8 градусам.

    Градусы не указываются с определенной целью, дабы не запутать пользователя. Выставишь на корпусе термостата +25С, а комнатный градусник в квартире будет показывать всего +20С.

    У большинства сразу же возникнет вопрос, почему регулятор работает с такой погрешностью? Не поломался ли он?

    Если же на вашем механическом термостате указаны именно градусы, это означает, что он главным образом работает и ориентируется на собственный датчик температуры воздуха, встроенный в корпус.


    Тот, что подключается к нему извне и прячется в стяжку, играет только роль защиты кабеля от перегрева.

    Питание 220В заводите на клеммы L и N через УЗО с током утечки не более 30мА.

    Схема подключения теплого пола напрямую через терморегулятор разных производителей однотипна и выглядит следующим образом.




    При подключении обязательно проверяйте мощность, которую способен пропустить через себя термостат. Обычно он рассчитан на нагрузку не более 16А (3,7кВт при напряжении 230В).

    В этом случае девайс прослужит долго и исправно. Релюшка, которая коммутирует контакт, при перегреве быстро выходит из строя. А вместе с ней придется менять и весь прибор.

    При нагрузке более 3,7кВт потребуется модульный контактор.

    Схема подключения в этом случае изменится на следующую.

    Здесь вместо нагрузки, провода с регулятора идут на контакты включающей катушки (А1-А2), а сам кабель обогрева подключается к силовым клеммам пускателя (1-2 или 3-4).

    Частый вопрос – есть ли разница, куда на терморегуляторе подключать фазу, а куда ноль?

    Если перепутаете фазу и ноль, то при отключении термостата разрываться будет не фазный проводник, а нулевой. Таким образом, фаза будет постоянно присутствовать на кабеле теплого пола, что естественно не безопасно.

    В тех устройствах, которые на корпусе имеют отдельный выключатель, при его нажатии происходит разрыв сразу двух проводников, и фазы, и ноля. Но это в ручном режиме отключения, и то не во всех моделях.

    Зачастую ноль через свою дорожку подается напрямую. Зашел на клемму и тут же ушел на теплый пол.

    При этом сам переключатель отвечает лишь за разрыв подачи питания на плату управления. При автоматическом срабатывании от датчика, всегда разрывается только один провод.

    Еще обратите внимание на то, что защитное заземление непосредственно на сам терморегулятор на заводится!

    Это может быть отдельная, обособленная клемма, через которую к защитному проводнику подсоединяется экран нагревательного кабеля.

    На самих терморегуляторах даже стоит значок “квадрат в квадрате”, что означает – прибор с двойной изоляцией.

    Такие знаки обычно наносят на переносные инструменты, не требующие наличия заземляющего контакта на вилке шнура питания.

    Какие сверхзадачи решают умные терморегуляторы, начиненные электроникой и дисплеем? Казалось бы, зачем покупать дорогое изделие, если можно приобрести регулятор с механическим колесиком и точно также выставлять для себя нужную температуру?

    А дело здесь в одной из принципиальных проблем комфортной работы систем отопления – инерционности.

    Дело в том, что выставив на теплых полах приемлемую для себя температуру в районе 23-25С, после ее достижения, даже с отключенным отопительным прибором, система до определенного момента по инерции все равно будет продолжать набирать градусы.

    Ни о каком поддержании комфортных условий с такими разбросами речи не идет. В умных электронных термостатах все это решается ШИМ регулированием.

    Термин этот пришел из радиоэлектроники. Там ШИМ – это широтно-импульсная модуляция. В отоплении данный принцип заключается в изменении времени включения и работы греющих элементов.

    Пока температура в комнате находится далеко от желаемых параметров (задано +25С, в комнате +18С), теплые полы все время включены (греют, греют и греют).

    Однако по мере достижения заданной точки (+25С), тепло начинает подаваться как бы небольшими, короткими импульсами (вкл-выкл). За счет этого происходит точное поддержание температуры в районе комфортной.

    Про инерционные процессы, связанные с перегревом или наоборот с чрезмерным охлаждением, в этом случае можете забыть. Ничего подобного от термостата с колесиком вы не добьетесь.

    В то же самое время не ждите каких-то глобальных изменений при замене термостата одной модели на другую. Бытует мнение, что если теплый пол не догревает, то стоит поменять терморегулятор на более дорогой, все само собой изменится.

    Тут же поднимется температура воздуха в комнате, и там, где ранее было холодно, наступит жарища. Грубо говоря, термостат – это своего рода спидометр в вашем автомобиле.

    Можете на спидометре нарисовать 300-350км/ч, но если движок не способен выдать такой мощи, то и данной скорости вам не видать. Если что-то и виновато в плохой работе теплых полов, то в первую очередь смотрите на температурный датчик.

    Проверить работоспособность термостата очень просто. Подаете на него питание 220В и подключаете выносной датчик.

    Далее, вместо теплого пола подсоединяете к термостату обычную лампочку накаливания. Начинаете выкручивать ручку, изменяя температуру.


    В определенный момент лампочка должна загореться.

    Далее зажимаете в руке температурный датчик и ждете. При нагреве от вашего тела исправный термостат сработает, и лампочка потухнет.

    Если датчик запрятан глубоко в стяжку, то можете прогреть это место феном и дождаться такого же эффекта. Когда лампа никак не реагирует, это говорит о неисправности устройства.

    Самый быстрый способ ремонта в этом случае – перевод работы с датчика пола, на встроенный в корпус датчик воздуха.


    Концы кабеля на девайсе от напольного источника температуры придется откинуть, а настройки самого прибора перезагрузить.

    Работать все это будет корректно при условии установки терморегулятора непосредственно в обогреваемом помещении.

    Если у вас электронный термостат с ШИМ управлением, то при вышеприведенном способе проверки, не рекомендуется слишком быстро нагревать датчик посторонним источником тепла. Чем это чревато?

    Во-первых, термостат тут же зафиксирует не нормальный рост тепла и сработает раньше времени. Во-вторых, “умные мозги” девайса принудительно отключат обогрев на ближайшие 20 минут.

    При этом температура уже через 5 минут на дисплее устройства будет достаточной для включения, а запуска и замыкания контактов не произойдет. Вследствие чего у вас возникнут сомнения в корректности работы терморегулятора.

    Поэтому проверка с быстрым нагревом идеально подходит для механических устройств, а с электронными будьте осторожны.

    Еще одна ошибка возникает при замене или подключении датчика разных производителей к одному и тому же регулятору. Дело в том, что все они имеют определенное сопротивление, соответствующее той или иной температуре.

    И если без изменения настроек взять и поменять температурный датчик на другой, это может привести к некорректной работе отопления. Разница по температуре между определяемой и фактической может достигать 10 градусов!

    Из-за другого сопротивления, меньше чем заводское, регулятор поймет это как завышенную температуру и даст команду на раннее отключение, хотя теплые полы будут еще не достаточно прогретыми.

    Для теплого пола применяются, так называемые NTC – датчики с отрицательным температурным коэффициентом. Данный термин означает, что с повышением окружающей температуры, их сопротивление уменьшается.

    Еще бывает PTC – положительный t коэфф. сопротивления. С ними происходит обратный процесс.

    У продвинутых девайсов (Devireg Touch) изначально в программу настроек занесено несколько разновидностей датчиков. На этапе установки просто выбирайте требуемый.

    Если вы не знаете марку, придется вручную сделать замеры сопротивления мультиметром.

    Полученные данные сравниваются и проверяются, соответствуют ли они выставленным заводским настройкам или нет.

    Наиболее правильной системой отопления считается та, которая имеет в каждой комнате свою собственную зону регулирования. Что это означает?

    При наличии в доме всего одного терморегулятора, разброс температур в разных частях здания будет достигать 5-6 градусов.

    Поэтому придется покупать и устанавливать не один, а несколько термостатов.

    Можно настроить отдельные регуляторы одновременно на две зоны, при этом меняя приоритет температур. То есть, установить в термостат в одной комнате, а выносной датчик от него завести в соседнее помещение.

    При этом в настройках нужно будет сделать выбор на какой элемент должен реагировать терморегулятор – на встроенный в корпус или на выносной. Добиться одинаковой температуры от одного прибора у вас не получится.

    Размещать терморегуляторы в мокрых зонах запрещено. Они должны иметь соответствующий уровень влагозащиты IP и монтироваться в зоне 3.

    Что это за зона, читайте в отдельной статье.

    Настройка и управление электронных разновидностей термостатов происходит по заводским инструкциям. В качестве примера давайте рассмотрим популярную (тысячи заказов со всего света + положительные отзывы) и недорогую модель терморегулятора от наших китайских товарищей.

    Для начала работы с прибором, первым делом подаете на него напряжение 220В.

    Через какое-то время подсветка гаснет и девайс переходит в режим энергосбережения. При этом даже в случае полного исчезновения напряжения, термостат запоминает и сохраняет в памяти все ранее заданные настройки.

    Поэтому один раз внесли все параметры, и далее ничего перепрограммировать не придется.

    В ручном режиме, когда на экране высвечивается иконка руки, можно установить требуемую температуру в комнате.

    Данный параметр выставляется путем нажатия кнопок со стрелочками (вверх – вниз).

    В состоянии покоя экран показывает действующую температуру в помещении.

    Чтобы перевести устройство в автоматический режим, нажимаете на кнопку с квадратиками и на дисплее тут же отображается значок часов или будильника.

    В автоматике изменить ранее заданный порог температуры при помощи стрелочных кнопок не получится. Данные намертво привязаны к конкретному дню недели.

    Этот день также высвечивается на экране (1-понедельник, 2-вторник и т.д).

    Временной отрезок суток показывается в виде маленького домика с цифрой (чуть выше дня недели).

    Через него можно запрограммировать работу отопления так, чтобы ночью полы работали на полную или наоборот с минимальной нагрузкой. Все зависит от ваших условий проживания.

    Всего можно установить шесть временных периодов.

    Если вы выбрали модель с WiFi, то время и день недели отображаются автоматически.

    При рабочем состоянии отопления, над домиком появляется дымок.

    Как только обогрев отключается, дымок исчезает.

    Гораздо удобнее управление термостатом осуществлять на смартфоне. Для этого потребуется скачать и установить программку Smart Life.

    Более подробно со всеми нюансами настроек данного термостата можете ознакомиться из видеоролика ниже.

    Простая и надёжная схема терморегулятора для инкубатора

    ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

    С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

    Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

    Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

    Простая, потому что кучу транзисторов заменила одна микросхема.

    Надёжная, потому что в схеме используются некоторые моменты:

    1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
    2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
    3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
    4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

    На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

    На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

    Третий элемент DD1.3 — сумматор.

    Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

    Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

    Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

    Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

    Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

    Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

    Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

    Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

    Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.

    Регулятор температуры для инкубатора на PIC

    Здравствуйте дорогие читатели. Хочу предложить вам еще один вариант термостабилизатора для инкубатора.

    Прототипом данной конструкции стала схема и программа опубликованных в статье «Микроконтроллерный термометр-термостабилизатор для инкубатора» П.Высочанского. в «Радио»№12 2007г. Схема и программа были изменены под мои возможности. Так что этот вариант может пригодиться и вам. При общении микроконтроллера с датчиком температуры DS18B20 совсем не обязательна высокая стабильность тактовой частоты, суньте в схему любой кварц с частотой около 4Мгц, да даже и 5Мгц и все будет работать. Поэтому от кварца я сразу же отказался и применил внутренний генератор на 4Мгц, что высвободило два выхода. Выходы портов контроллера рассчитаны на ток до 25ма – что вполне достаточно для обычных светодиодных индикаторов. Значит можно отказаться и от лишней микросхемы. Индикатор с общим анодом заменен индикатором с общим катодом – они применялись в старых АОНах, они дешевле и достать их легче по дешевке. Получилась вот такая схема – рис.1

    После включения питания загорается светодиод LED2 зеленого цвета. Начинает свою работу и программа микроконтроллера. Если текущее значение температуры ниже заданного, на выходе RA1 МК установлен высокий логический уровень, что открывает транзистор VT1.О том, что нагреватель работает, сигнализирует светодиод LED1. По мере прогрева инкубатора температура, измеренная датчиком, растет. Как только она сравняется с заданной, нагреватель будет обесточен. Его следующее включение произойдет при температуре, на 0,2°С меньше заданной. По умолчанию в инкубаторе поддерживается температура 38°С. Если требуется иная, следует нажать на кнопку SB1 или SB2 и удерживать ее нажатой, пока цифры на индикаторе не начнут мигать. Они соответствуют поддерживаемому значению температуры. Нажимая на кнопки SB1 и SB2, это значение уменьшают или увеличивают. Можно выбрать любое значение в интервале З2. 39,9°С с шагом 0,1°С. Если в течение 10с ни одна кнопка не нажималась, устройство автоматически возвратится в рабочий режим с прежним значением заданной температуры, сделанные изменения учтены не будут. Чтобы возвратиться в рабочий режим с записью в память МК вновь установленного значения, необходимо нажать на кнопку SB3. Этой же кнопкой можно в любой момент вызвать на индикатор для просмотра значение поддерживаемой температуры.


    Транзистор VT1 – КТ829В является ключом, с помощью которого включается и выключается нагреватель 1. Нагреватель имеет вид дюралюминиевой пластины, установленной на высоте два сантиметра от дна инкубатора и имеющей меньший периметр на один сантиметр с каждой стороны, чем у дна. Эта пластина является радиатором стабилизатора тока, при протекании тока через который, и происходит нагрев. В дне и в этом радиаторе сделаны вентиляционные отверстия. Про такие нагреватели можно прочитать здесь. Все элементы схемы установлены на печатной плате.

    В качестве сетевого трансформатора использован трансформатор ТС-90 от старого телевизора. С трансформатора сматываются все вторичные обмотки и наматываются две новые. Для этого трансформатора количество витков на один вольт равно 4,4. Полное количество витков обмотки IV будет равно 4,4 х 7 = 31 провода 0,35. Напряжение обмотки III возьмем равным 40В. Число витков для ее = 4,4 х 40 = 176 витков. Ток, протекающий через стабилизатор имеет величину 1,2 ампера. Диаметр провода равен = 0,7•корень квадратный из тока. Диаметр =0,7•1,095 = 0,76мм. При всем этом мощность обогревателя равна U•I = 40•1,2=48вт. Для домашнего инкубатора этого вполне достаточно. Успехов всем. К.В.Ю.

    Рисунок печатной платы, схема, файл прошивки здесь

    Схема терморегулятора для инкубатора своими руками

    Приведенная ниже схема является развитием темы симисторного регулятора мощности. В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

    Схема терморегулятора

    Принцип работы терморегулятора

    Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.
    При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.
    Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

    Замены деталей

    Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.
    В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.
    Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии 1N4004 — 1N4007
    На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

    А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

    Области применения терморегулятора

    В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

    Как монтировать обогреватель для инкубатора

    • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
    • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
    • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

    Обогреватель для аквариума

    Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

    Особенности монтажа

    • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
    • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
    • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

    Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

    P.S.
    Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

    17 thoughts on “ Схема терморегулятора для инкубатора своими руками ”

    За микроконтроллерами будущее, не спорю, спасибо Гарвардской архитектуре вообще и Микрочип Технолоджи в частности. Но везде ли рентабельно их применение, с их-то возможностями. Сами-то они не дороги, но необходимая им периферия может быть разной. Да и без знания программирования на низком, машинном уровне — браться за них не стоит. Одним словом — чип для профессионалов и профессионального использования.
    Но осваивать цифровые технологии необходимо и любителям, конечно, куда сейчас без них.

    Видел инкубатор со схемой которая намного проще, где используется маломощный закрытый нагреватель и тепловое реле-регулятор. Конечно эта схема хорошая, но для любителя сложновата, ведь её надо ещё настроить.

    Эту схему настраивать не нужно, заработать должна сразу. Вот подстраивать температуру нужно будет.
    Если брать готовый регулятор, то и паять ничего не нужно: просто прикрутить провода к клеммам и готово. Кстати терморегулятор с цифровым индикатором, микропроцессором и датчиком температуры на алиэкспрессе можно купить что-то около 2 долларов. Долларов за 10-15 можно взять терморегулятор для теплого пола с графиком изменения температуры в течении суток и по дням недели.

    Если для простенького инкубатора, то можно и за 2$, а лучше за 3-4, с задачей температурного люфта, чтоб лампочки не «дребежжали» из-за чувствительности датчика. Для хорошего, хорошо брать с полным графиком (и памятью на несколько) за 15-20$, чтоб задать полный цикл на весь период инкубации (для разных птиц), а к тенам подключить тихоходный (или редукцированный ) движок переворотки.
    Но, по-настоящему хорошо — изучать pic-процессоры и создавать на их базе свои устройства, любой функциональности. А на алиэкспрессе можно купить программатор.

    Микроконтроллеры штука хорошая, но когда речь идет о живых душах, лучше проще но надежнее на мой взгляд. Дабы яйца не заморозить или рыбок аквариумных не сварить.
    Потому как бывает, что прошивку вылизываешь до блеска, мплаб и протеус аж дымятся от симуляции, и макет казалось бы работает. А вот складываются вдруг однажды некие условия, в которых программа заходит в тупик и устройство на МК впадает в маразм. И что характерно, прямо на ровном месте, там где казалось бы ничего не должно случится. Однако же не досмотрел какой-то из возможных вариантов, и пожалуйста — глюк. Терморегулятор с компаратором уж точно не заглючит при исправных деталях.

    А можно ли использовать подобный(близкий к этому)принцип для создания токового реле нагрузки,но с 12 вольтовым питанием устройства

    Да, даже проще получиться не нужен будет стабилитрон и мощный резистор, однопереходной транзистор, а вместо симмистора — MOSFET (если нагрузка небольшая то можно и биполярным транзистором обойтись).

    Для любителя-новичка эта схема не столько сложна, сколько опасна — в ней нет гальванической развязки с сетью питания! Выполнять ее монтаж нужно очень грамотно, аккуратно и качественно.

    Компаратор без гистерезиса и достаточно мощный нагреватель не дадут неожиданных эффектов для приборов работающих по соседству? Я делал похожий для обогрева кожуха уличной аналоговой камеры. Но нагреватель был сделан из резисторов МЛТ и в качестве ключа мощный биполярный резистор (питание нагревателя 15 вольт). В ходе переключения компаратора «дребезг» был такой, что несколько секунд невозможно было ничего разобрать на видеозаписи с камеры. А в морозную погоду эти дребезги каждые несколько минут возникали. Помехи от многочисленных переключений на пороге срабатывания компаратора. Пришлось камеру снимать, допаивать навесом на плату резистор между выходом и неинвертирующим входом для обеспечения гистерезиса. Инкубатор и аквариум, конечно, не камера, но мало ли чего с ними в одну розетку будет подключено…

    Естественно, дребезг переключений — основной недостаток данного устройства. И чем выше чувствительность и безинерционность термодатчика — тем он более ощутим. Об этом стоит помнить и, если это создает неудобство, то устранять, хотяя бы приведенным Root методом.
    В закрытых, теплоизолированных от внешних условий системах с «тугими» термодатчиками, данная проблема особых неудобств не представляет.
    Не стоит забывать и о том, что в те давние времена особочуствительной электроники практически не было.

    Привет всем! кто может под заказ сделать плату для инкубатора?

    Непонятно — а зачем в схеме симистор? Ведь управление идёт только во время одной полуволны?
    КУ?

    Резонно, в данной схеме можно обойтись тиристором, например КУ202Н.

    Нет, нельзя. Управление симистором происходит в момент зарядки конденсатора С1, а так же при разряде этого конденсатора, в следствии чего через симистор на нагрузку проходит весь период переменного напряжения сети. Через КУ202 пройдет только пол периода.

    Управление симистором происходит в момент заряда конденсатора С1, так и в момент разряда этого конденсатора, то есть через симистор на нагрузку проходит весь период переменного напряжения сети.

    Здравствуйте. Я ещё любитель по этому у меня вопрос. А можно в место микрашки усилителя кр140уд6 поставить кр140уд1б? И в этом случае меняются ли указанные ножки? Заранее спасибо. Схема классная.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: