Эффект Холла и его применение

Понятие эффекта Холла: в чем состоит, принцип работы

  • Что такое эффект Холла — описание явления
  • В чем суть, как объяснить простыми словами
  • Какие бывают разновидности эффекта Холла
  • Применение эффекта Холла на практике

Что такое эффект Холла — описание явления

Эффект Холла — это явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

Данный эффект был открыт в 1879 году Эдвином Холлом в тонких пластинках золота, когда ученый обнаружил на их краях разность потенциалов.

Принцип измерения: при помещении в магнитное поле пластины-проводника под 90 градусов к направлению силовых линий магнитного потока, произойдет перемещение электронов по поперечине пластины под действием силы Лоренца — силы, с которой электромагнитное поле действует на точечную заряженную частицу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Таким образом, эффект Холла выражается действием магнитного поля на заряженную частицу.

В чем суть, как объяснить простыми словами

Описание механизма работы: к проводящему проводнику подводится электрический ток, затем гальванометр подключается к его краям. Далее электромагнит включается так, чтобы линии напряженности поля лежали перпендикулярно плоскости пластины.

Таким образом предполагалось выявить условия для изменения протекания тока. В результате было обнаружено, что при подаче на тонкий лист золота электрического тока заряд в ней распределялся равномерно по всей поверхности. Но как только добавляется ток — заряд переходит к краям и возникает разность потенциалов.

Именно на этом открытии позже были построены одноименные датчики.

Какие бывают разновидности эффекта Холла

Данный эффект бывает трех видов:

  • аномальный;
  • квантовый;
  • спиновой.

Аномальный эффект способен проявляться в ненамагниченных материалах. Т.е. это такой метод, при котором появление напряжения не обусловлено влиянием магнитного поля. При этом необходимым условием для наблюдения данного эффекта является нарушение инвариантности по отношению к обращению времени в системе.

Квантовый эффект Холла отличается тем, что он квантуется только в сильно намагниченных полях, которые приводят к кардинальной перестройке внутренней структуры двумерной электронной жидкости.

Спиновый эффект Холла наблюдается в ненамагниченных проводниках, которые не переместили в поле действия силовых линий магнита. Смыслом данного эффекта является то, что электроны с антипараллельными спинами отклоняются к противоположным краям пластины.

Применение эффекта Холла на практике

С помощью данного метода появилась возможность вычислять количество носителей заряда на единицу объема, а также их подвижность при измерении напряжения магнитного поля. Его используют при построении моторов со следящим приводом. Использование метода позволяет измерить угол поворота вала мотора.

Также датчики Холла устанавливаются в электростартерах ДВС, охлаждающих системах ПК, в приводах дисководов и вентиляциях компьютерной техники. Их используют в мобильной и бытовой технике совместно с двигателями, в измерительном оборудовании за счет способности преобразовать магнитную индукцию в разность потенциалов.

Одним из главных преимуществ таких датчиков является их удобство и безопасность, которые достигаются путем электрической изоляции. Датчики изготавливаются из таких металлов, как германий и кремний. Их легируют мышьяком или фосфорной сурьмой.

Материал при этом должен обладать большой подвижностью носителей зарядов. Для наибольшего эффекта вещество не должно обладать высокой электропроводностью. Преимуществом таких устройств является низкая зависимость от изменения температуры.

Эффект холла — в чем заключается, применение для датчиков тока и положения, формула, квантовый, аномальный и другие виды

  1. Что такое эффект Холла?
  2. Виды
  3. Аномальный
  4. Квантовый
  5. Дробный
  6. Спиновый
  7. Формулы и расчёты
  8. Применение
  9. В проводниках и полупроводниках
  10. Датчики Холла — назначение и разновидности
  11. Изготовление датчика тока на основе эффекта Холла

Электричество и магнитные поля существуют в тесной взаимосвязи друг с другом. Многие известные физики посвятили жизнь исследованию этой связи, поиску и описанию законов, на которых она базируется, а также способов применения на практике полученных теоретических сведений. Одним из таких учёных был Эдвин Герберт Холл, выдающийся американский исследователь, автор ценных научных материалов. В ходе одного из экспериментов он обнаружил необычное явление, которое со временем получило название «эффект Холла». Сегодня он массово используется в бытовой и компьютерной технике, электрооборудовании автомобилей, контрольно-измерительных приборах и, конечно, исследовательских лабораториях. Так в чём же физическая суть эффекта Холла и почему он не теряет своей актуальности спустя почти полтора века с момента открытия?

Что такое эффект Холла?

Эдвин Холл, пропуская ток через тонкую золотую пластину, расположенную между двумя магнитами, заметил, что носители заряда (электроны) отклоняются от центральной оси к одной из граней проводника. Таким образом, на этой грани возникает отрицательный заряд, а на противоположной — положительный. Возникшая разность потенциалов именуется холловским напряжением. Она строго перпендикулярна току в проводнике и вектору магнитной индукции. Это явление наблюдается не только в золоте, но и в любых проводниковых и полупроводниковых материалах, помещённых в магнитное поле.

Читайте также:
Цветные межкомнатные двери в интерьере - модные тенденции и советы по выбору.

Если проанализировать физическую суть, можно обнаружить, что у истоков накопления заряда на гранях проводника лежит сила Лоренца, с которой магнитное поле воздействует на заряженную частицу. Под её воздействием электроны будут накапливаться на грани проводника до тех пор, пока их суммарный заряд не скомпенсирует существующее магнитное поле.

В том же случае, когда внешнее магнитное поле слишком велико, система выйдет за рамки стабильности, и заряженные частицы начнут двигаться по циклоиде. Это называется несоблюдением критерия малости.

Цифровые датчики Холла делятся на униполярные и биполярные

Помимо эффекта Холла, законы которого описаны классической физикой и соблюдаются во всех нормальных или приближённых к нормальным условиям экспериментах, выделяют ещё несколько разновидностей явления возникновения разности потенциалов в проводнике.

Аномальный

Аномальным называют любой случай накопления заряда на грани проводника, в котором исключено воздействие внешних магнитных полей. Необходимым условием является перпендикулярная направленность разницы потенциалов относительно направления силы тока.

Причины, по которым возникает аномальный эффект Холла, обычно кроются в намагниченности металла-проводника или особенностях его молекулярной структуры.

Квантовый

Законы возникновения разницы потенциалов в «квантовом мире» исследуются на примере плоского проводника типа ДЭГ (двумерный электронный газ). Квантовый наблюдается в сильных магнитных полях и при низких температурах. Он выражается в квантовании холловского сопротивления, которое на графике имеет чётко выраженные «участки плато». Чем выше сопротивление, тем длиннее участки плато и выше разница между ними.

Открытие данного явления — одна из основных вех современной квантовой физики. Клаус фон Клитцинг, первооткрыватель квантового эффекта Холла, в 1985 году был удостоен Нобелевской премии.

Дробный

Многие передовые учёные в 80-х годах прошлого века заинтересовались исследованиями фон Клитцинга и продолжили изучать свойства разности потенциалов в ДЭГ. Наибольших успехов достигли Даниэль Цуи и Хорст Штёрмер, которые проанализировали промежуточные участки между «плато сопротивления» и пришли к выводу, что при существенном увеличении интенсивности магнитных полей «участки плато» можно получить и на дробных значениях электронных уровней Ландау, например, при n=1/3; n=2/5; n=3/7 и т. д.

Такое явление получило название дробного квантового эффекта Холла, а его первооткрыватели получили Нобелевскую премию по физике в 1998 году. В настоящее время ведутся расширенные исследования квантового и дробного квантового видов данного эффекта.

Спиновый

В 2003–2004 годах было изучено поведение электронов с антипараллельными спинами в проводниках, изолированных от каких-либо магнитных полей. Теоретической базой исследования послужили теории Владимира Переля, выдвинутые в далёком 1971 году. Они были доказаны на практике, когда удалось зафиксировать отклонения данных групп электронов к противоположным граням проводника. Движение заряженных частиц напоминает первый вид эффекта — аномальный.

Формулы и расчёты

Поскольку данный эффект базируется на силе Лоренца, то именно с её определения и начинается математическое описание возникшей разницы потенциалов. Сила Лоренца определяется из следующего выражения:

  • q — заряд частицы;
  • v — скорость движения частиц;
  • B — внешнее магнитное поле.

Электрическое поле, сформированное образовавшимися на гранях проводника зарядами, тоже влияет на движущиеся в сечении электроны. Сила этого влияния описывается так:

  • q — заряд частицы;
  • E — напряжённость внутреннего электрического поля.

Когда разность потенциалов уравновешивает магнитное поле, система считается стабильной. При этом соблюдается условие Fл= Fэл. Следовательно, верны и два следующих утверждения:

Скорость электронов обычно определяется с помощью формулы плотности тока:

  • q — заряд частицы;
  • n — кол-во частиц на единицу объёма.

Теперь электрическое поле E можно описать с помощью выражения:

Найдём разность потенциалов:

Uн=dE=djB/qn, где d — толщина проводящей пластины.

Упростить данное выражение можно с помощью так называемой «постоянной Холла», которая имеет вид R=1/qn. Окончательная формула разности потенциалов примет вид:

То есть, разность потенциалов прямо пропорциональна толщине проводника, магнитной индукции и плотности тока.

Применение

Поскольку данное явление позволяет адекватно оценить концентрацию и подвижность заряженных частиц, проследить чёткую зависимость между силой тока, внешним магнитным полем и поведением электронов в материале, он нашёл широкое применение на практике. В общем виде устройства и приборы, принцип действия которых основан на эффекте Холла, можно разделить на две категории: контрольно-измерительное оборудование для материалов с различной проводимостью и электронные датчики.

Читайте также:
Как сделать плиткорез из болгарки своими руками: пошаговая инструкция

В проводниках и полупроводниках

В точном машиностроении рассматриваемый эффект используют для определения электромагнитных свойств и молекулярной структуры материала. В проводниках эти показатели оцениваются посредством анализа движения электронов под воздействием силы тока и магнитных полей, в полупроводниках же с равной эффективностью анализируется как поведение электронов, так и образование электронных дырок. Широкое распространение получил метод ван дер Пау, позволяющий определить:

  • тип полупроводника (p или n);
  • концентрацию заряженных частиц;
  • холловскую подвижность заряженных частиц.

Метод применим к любому плоскому образцу произвольной формы, толщина которого намного меньше длины исследуемого участка. Он широко используется при первичных расчётах полупроводниковых приборов: диодов, транзисторов, тиристоров и др.

Направление поля Холла в проводниках зависит от их типа

Датчики Холла — назначение и разновидности

Самостоятельные устройства и элементы систем, использующие интересующий нас эффект для измерения магнитоэлектрических величин, называют датчиками Холла. Их делят на две большие группы: аналоговые и цифровые. Аналоговые датчики очень просты и представляют собой, как правило, изолированный источник магнитного поля, действие которого на проводник напрямую зависит от расстояния и полярности. Такие датчики служат для преобразования магнитной индукции в разность потенциалов.

Они необходимы для измерения магнитных полей. Если индукция поля превышает заданный порог срабатывания датчика, то он формирует цифровой сигнал «1», в противном случае значение сигнала – «0». Ввиду наличия «слепых зон», в которых индукция слишком мала для срабатывания датчика, его применение не всегда целесообразно. Цифровые датчики холла делят на:

  • униполярные — генерируют выходной сигнал в магнитном поле любой полярности, отключаются при падении индукции;
  • биполярные — переключают выходной сигнал с «1» на «0» при изменении полярности магнитного поля.

Датчики Холла встречаются в почти любой достаточно сложной электронике — от бесконтактных выключателей до смартфонов, от автомобильных двигателей до ионных двигателей космических кораблей. Способность реагировать на появление и изменение магнитных полей сделала устройство незаменимым в электронике и электромеханике, а отсутствие прямого физического взаимодействия обеспечило высокую надёжность и точность, износостойкость и долговечность датчиков.

Изготовление датчика тока на основе эффекта Холла

Если Вы обладаете хотя бы базовыми навыками в работе с электронными компонентами, то без особого труда сможете самостоятельно сконструировать датчик тока. С его помощью можно будет бесконтактно определять наличие электрического тока в проводнике. Вот полный перечень материалов и инструментов, которые Вам понадобятся:

  • цифровой датчик Холла в «транзисторном» корпусе, например, A3144 или US1881;
  • ферритовое кольцо внешним диаметром не менее 25 мм (можно купить в магазине радиодеталей или извлечь из старого блока питания от энергосберегающих ламп или ПК);
  • электрический зажим типа «крокодил»;
  • цианакрилатный клей;
  • резистор и конденсатор номиналами соответственно 10 кОм и 0,1 мкФ;
  • плата Arduino, макетная плата, провода — для временной макетной сборки;
  • плата Arduino, припой, канифоль, паяльник, провода — для сборки навесным монтажом;
  • ручной лобзик с набором пилок, надфили, наждачная бумага, кусочки резины или ветоши.

Разверните корпус датчика маркировкой к себе. Нумерация выводов слева направо классическая: 1, 2, 3. Между первой и второй ножкой установите керамический конденсатор ёмкостью 0,1 мкФ (100 нФ). Между первой и третьей ножкой установите резистор сопротивлением 10 кОм. Теперь подключим датчик к плате Arduino по такой схеме:

  • «1» — к контакту 5V+;
  • «2» — к контакту GND;
  • «3» — к цифровому выходу.

Устанавливать кермачиеский конденсатор между первой и второй ножками необязательно, но рекомендуется для стабилизации входящего напряжения

Ферритовое кольцо аккуратно распилите пополам с помощью ручного лобзика. Материал твёрдый, но достаточно хрупкий, поэтому работать придётся осторожно. Полученные полукольца очистите от сколов и шероховатостей, после чего приклейте сбоку к «челюстям» зажима-крокодила так, чтобы в сжатом состоянии торцы полуколец едва касались друг друга. На один из торцов наклейте кусочек плотной толстой ткани или резины, на второй — корпус цифрового датчика Холла.

Теперь, поместив внутри разрезанного ферритового кольца проводник и пустив по нему электрический ток, вы сможете наблюдать появление входящего сигнала на плате Arduino.

На сегодняшний день классический эффект Холла полностью изучен и служит теоретической базой для более или менее сложных электронных устройств. Ведутся исследования частных разновидностей эффекта Холла, в том числе поиск способов их использования в электрических, жидко- и газотопливных двигателях нового поколения.

Читайте также:
Современные теплые и холодные алюминиевые окна и их отличия

Эффект Холла

Это явление было открыто в конце 19-го века. Эффект Холла (ЭХ) получил специфическое название по фамилии ученого, который зарегистрировал изменение потенциалов на золотой пластине в ходе экспериментов с электричеством и постоянными магнитами. В настоящее время основные принципы открытия применяют для изготовления датчиков. С их помощью измеряют силу тока без разрыва цепи.

Что такое эффект Холла

Для повторения классического эксперимента не обязательно применение ценных металлов. Чтобы зарегистрировать возникновение разницы потенциалов, вполне достаточно чувствительности серийного лабораторного вольтметра. Сильный однородный магнитный поток обеспечить несложно, если подобрать подходящие изделия из неодимовых сплавов.

Если расположить проводник (пластину) в магнитном поле, как показано на рисунке, на торцах будет измеряться напряжение. Серией элементарных опытов можно обнаружить закономерность изменения показаний при увеличении (уменьшении) силы тока в рабочей цепи.

На этом принципе основано практическое применение эффекта Холла (ЭХ). По этой схеме выполняют измерение электрических параметров, не нарушая целостность токопроводящих цепей. Бесконтактный метод позволяет надежно изолировать датчик от неблагоприятных внешних воздействий. Такие методики помогают продлить долговечность оборудования, которое эксплуатируют в сложных условиях. В частности, подобные решения применяют в конструкциях автомобильной и авиационной техники.

От Лоренца к Холлу

Для лучшего понимания физических процессов следует вспомнить базовые определения силы Лоренца. Они описывают воздействие на движущийся заряд магнитного поля. При перпендикулярном расположении силовых линий и вектора скорости электрон будет отклоняться вертикально вверх.

На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).

К сведению. Перемещение электронов противоположно движению тока, отмеченного на картинке стрелками.

Для определения полярности потенциала пользуются известным правилом правой руки. Разместив ладонь в соответствии с направлением движения электронов, положением большого пальца определяют направление воздействия силы Лоренца. В рассматриваемом примере она перемещает отрицательные заряды на пластине вниз. Соответствующий знак «-» отмечен на картинке.

Виды

В классическом варианте эффект холла это перемещение в определенном направлении зарядов при воздействии магнитного поля. Ниже представлены особенности разных видов явления, которые основаны на иных принципах.

Аномальный

В этом случае главная особенность заключается в том, что разница потенциалов регистрируется без воздействия магнитного поля. Подобные явления наблюдают в изделиях с намагниченными свойствами.

Квантовый

Эта разновидность ЭХ определяется появлением квантовых характеристик сопротивления при существенном снижении температуры образца. Экспериментально подтверждена зависимость проводимости от силовых параметров магнитного поля при сохранении постоянства концентрации носителей зарядов.

Дробный

Такое явление – разновидность рассмотренного выше квантового ЭХ. Его зарегистрировали в ходе последовательного увеличения магнитной индукции.

Спиновый

В этом варианте для экспериментов используют проводники с немагнитными характеристиками. Внешнее поле отсутствует. Наблюдают смещение зарядов в противоположных направлениях.

Формулы и расчёты

Так как в классическом определении эффект Холлаэто перемещение зарядов под воздействием внешнего магнитного поля, можно сделать несколько выводов:

  • образующееся в контрольных точках напряжение (Uх) будет прямо пропорционально току (I);
  • аналогичная зависимость определена силовыми параметрами поля, которые выражают через вектор (В) магнитной индукции;
  • существенное значение имеет размерность проводника.

Какой получится потенциал при определенных исходных параметрах? Ниже показан алгоритм преобразований с итоговой формулой для расчетов.

Для определения силы Лоренца (Fл) используют выражение:

где:

  • q – элементарный заряд;
  • v – скорость его перемещения.

При подключении пластины по схеме основного эксперимента при постоянной силе тока разница потенциалов стабилизируется. После этого созданное электрическое поле будет воздействовать на заряды с определенной силой Fэ = q * E, где E – это соответствующая напряженность.

В этом состоянии Fл = Fэ, поэтому значение правых частей формул также будет равным: q*v*B = q * E. Следовательно E = v*B.

Плотность тока (j) определяется выражением:

j = q * v *n, где n – это число заряженных частиц в единице объема.

После преобразования выражения расчет для скорости подставляют в формулу напряженности:

Разницу потенциалов несложно вычислить по напряженности и расстоянию (d) между контрольными точками (гранями пластины):

Uх = E * d = d * (j/q*n) * B = (1/q*n) * d * j * B.

Часть выражения (1/q*n) = R – это постоянная Холла. Она определяет обратную зависимость от суммарного заряда частиц.

Читайте также:
Как из профильной трубы сделать красивый декоративный элемент? | Советы и идеи

Подставив коэффициент Холла в последнее выражение, можно записать итоговую формулу следующим образом:

Достоинства и недостатки

Основное преимущество датчиков, созданных на основе данного эффекта, – изолированность цепей (измерения и токопроводящей). Кроме отмеченной выше хорошей защищенности от внешней среды, такое конструкторское решение обеспечивает отсутствие обратного влияния на основную электрическую схему. Подразумевается возможность оперативного изменения места измерения. Дополнительный плюс – минимальная мощность потребления.

Недостатком является ограниченная точность (1-2% в лучших образцах). Применение резистивного аналога в комплекте с дифференциальным усилителем позволяет улучшить результат с меньшими затратами. Однако в этом случае предполагаются монтаж контрольного компонента в рабочую цепь и сравнительное увеличение потребляемой мощности.

Также следует отметить ограниченный частотный диапазон датчиков Холла. Серийные модели функционируют корректно до 70-90 кГц. Более дорогие изделия широкополосной категории рассчитаны на применение до уровня 240-260 кГц. Нужно учитывать низкую чувствительность, которая вызывает затруднения при работе с малыми токами.

Применение

С учетом небольшой разницы потенциалов понятно типовое решение с подключением выводов датчика к операционному усилителю. Далее сигнал поступает на индикаторное устройство. Преобразование в цифровую форму выполняют с помощью триггера. При соответствующей настройке схема срабатывает, если зарегистрирован определенный уровень магнитного поля.

Перечисленные возможности применяют для контроля положения ротора или частоты вращения электромотора. В нужных местах закрепляют постоянные магниты и датчик.

В проводниках и полупроводниках

Физика эффекта Холла (воздействие магнитного поля на электроны) подробно рассмотрена выше. Однако при работе с полупроводниками дополнительно учитывают поведение дырок. В частности, определяют концентрацию и подвижность заряженных частиц, фотопроводимость материалов. Измерение полярности потенциалов позволяет выяснить тип полупроводника (p или n).

Датчики Холла

Аналоговые изделия функционируют на основе базовых принципов явления. По изменению потенциала определяют силу тока. Цифровые модели срабатывают при определенном уровне индукции. Единица на выходе сигнализирует о наличии магнитного поля.

Изготовление датчика тока на основе эффекта Холла

Для создания функционального устройства нужно приобрести датчик в типовом исполнении («транзисторный» корпус с тремя выводами). Подходящее по размерам ферритовое кольцо аккуратно распиливают пополам. Полукольца подсоединяют к типовому зажиму типа «крокодил». К торцам приклеивают датчик и демпфирующую прокладку.

После подключения через усилитель к мультиметру можно измерять ток в проводниках без разрыва цепей.

Видео

Эффект Холла. Виды и применения. Работа и особенности

В 1879 году американский физик Эдвин Холл провел эксперимент, пропустив магнитный поток через тонкую пластину из золота. В ходе эксперимента он обнаружил возникновение на краях пластины разности потенциалов, образовался эффект Холла.

Что такое эффект Холла

Если поместить в магнитное поле пластину-проводник или полупроводник под 90° к направлению силовых линий магнитного потока, электроны в пластине под действием силы Лоренца начнут смещаться по поперечине этой пластины. Направление смещения электронов зависит от направления силы тока и направления силовых линий магнитного потока. Иносказательно эффект Холла (ЭХ) – это частный случай действия силы Лоренца, то есть действия магнитного поля на заряженную частицу.

Вот как это выглядит простейшим образом на примере. Представьте, что пластина расположена к нам торцом, а ее кромка смотрит вниз. Эта пластина сделана из металла, оба ее торца подключены к источнику питания, задний торец на минус, передний на плюс.

В нашем воображаемом случае электрический ток будет двигаться по направлению к нам, то есть в нашу сторону, откуда мы наблюдаем. Справа и слева от пластины мы видим два магнита. Магнит справа обращен к пластине северным полюсом, а тот что слева обращен к пластине южным полюсом. Таким образом, в нашем случае силовые линии магнитного поля идут справа налево, поскольку всегда выходят из северного полюса и входят в южный. Силовые линии будут отклонять электроны, проходящие по пластине к ее верхней кромке.

Если мы поменяем направление тока в пластине, поменяв местами проводники, электроны начнут отклоняться вниз. Если мы не будем менять направление электрического тока, а поменяем полюса магнитов, электроны будут сдвигаться вниз. А поменять и то, и другое, сила Лоренца будет перемещать электроны вверх.

Итак, становится видно, что на одной из кромок нашей пластины под действием силы Лоренца копится отрицательный заряд, а на противоположной кромке – положительный. Наблюдается разность потенциалов между двумя кромками пластины, а другими словами – электрическое напряжение. Разность будет увеличиваться до тех пор, пока не уравновесит силу Лоренца. Разность потенциалов, возникающая конкретно в таких случаях, называется напряжением Холла и рассчитывается по формуле:

Читайте также:
Хочу установить двери из алюминиевых профилей. Каковы требования к их монтажу?

UХолл=−IB/et

Где I – сила тока, B – вектор магнитной индукции, e – заряд электрона, p – количество электронов в единице объема, t – толщина пластины.

Аномальный ЭХ

Бывают случаи, когда ЭХ обнаруживается в пластине без пропускания через нее магнитного потока. Это может происходить только тогда, когда нарушается симметрия по отношению к обращению времени в системе. В частности, аномальный ЭХ способен проявляться в намагниченных материалах.

Квантовый ЭХ

В двумерных газах, у которых среднее расстояние между частицами уменьшено до соизмеримых с длиной де Бройля на зависимости поперечного сопротивления к воздействию магнитного поля возникают плато сопротивления в поперечине. ЭХ квантуется только в сильных магнитных полях.

В магнитных потоках с еще большей силой индукции обнаруживается дробный квантовый ЭХ. Он взаимосвязан с перестроением внутренней структуры двумерной электронной жидкости.

Спиновый ЭХ

СЭХ можно наблюдать на не намагниченных проводниках, не помещенных в поле действия силовых линий магнита. Эффект заключается в отклонении электронов с антипараллельными спинами к противоположным краям пластины.

Применения

Эффект холла применяется для изучения особенностей полупроводников. С помощью него можно вычислить количество носителей заряда на единицу объема, а также их подвижность. В частности, пользуясь эффектом Холла можно отличить электрон от квазичастицы с положительным зарядом.

ЭХ послужил фундаментом для разработки датчиков Холла. Эта аппаратура измеряет напряженность магнитного поля. Такие датчики активно применяются для построения моторов со следящим приводом. В них они исполняют роль датчика обратной связи. Они измеряют угол поворота вала мотора.

Также датчики Холла устанавливаются в электростартерах ДВС, охлаждающие системы ПК, навигационных системах мобильных телефонов, применяются в измерительных приборах для вычисления количества заряда.

Что такое ЭМИ? Влияние электромагнитного излучения на человека

Рубрика: Медицина

Дата публикации: 08.06.2020 2020-06-08

Статья просмотрена: 787 раз

Библиографическое описание:

Кудратиллаев, К. Р. Что такое ЭМИ? Влияние электромагнитного излучения на человека / К. Р. Кудратиллаев. — Текст : непосредственный // Молодой ученый. — 2020. — № 23 (313). — С. 78-80. — URL: https://moluch.ru/archive/313/71253/ (дата обращения: 15.01.2022).

В статье автор собирается объяснить, что такое ЭМИ, а также определить главные источники электромагнитного излучения в быту, влияние ЭМИ на здоровье и средства защиты от ЭМИ.

Ключевые слова: ЭМИ, источники, влияние, защита.

Электромагнитное излучение — это волны электромагнитного происхождения, возникающие при изменении электрического или магнитного поля.

Каждая клетка в теле человека создает вокруг себя слабое электромагнитное поле, путем вибраций. Часто это явление называют «биополем», «аурой» или биопотенциалом. Так как наше тело имеет собственное электромагнитное поле, то любое изменение приводит к изменению самой структуры поля. В конечном итоге ведущий к различным проблемам.

В настоящее время известны следующие виды ЭМИ:

Вид излучения

Длина волны

Применение

Радиосвязь, интернет, микроволновая печь

2. инфракрасное излучение

Отопление, стерилизация, приготовление пищи.

4. ультрафиолетовые излучение

Лампы для загара, дезинфекция.

5. рентгеновское излучение

Источниками электромагнитного излучения могут быть различные приборы, аппараты и приспособления, которые генерируют ЭМИ. Основной характеристикой для измерения вреда ЭМИ является мощность, а также продолжительность воздействие ЭМИ. В настоящее время основную опасность для здоровья людей представляют:

− электроприборы(все бытовые приборы)

− гаджеты и компьютеры

− роутеры и источники беспроводной сети

Человеческий организм безусловно уникальная система, которая защищает себя от всех угроз для своего существования. Наш организм может справиться или, вернее сказать, защитить себя от некоторой части ЭМИ. Но человеческий организм получает сверхдозу ЭМИ каждый день. Если добавить к этому эффект накопления ЭМИ, что человеческий организм живет с «бомбой» замедленного действия. Вследствие постоянного воздействия ЭМИ проявляются различные сбои в организме что ведет к тяжелым последствиям. Люди, которые часто подвергаются действию ЭМИ, жалуются на учащение заболеваемости из-за снижения иммунитета, низкую стрессоустойчивость, замкнутость, снижение сексуальной активности и работоспособности. В зону риска попадают не только представители интеллектуального труда и IT-специалисты. В XXI веке появилось понятие как «интернет зависимость», т. е. люди начали злоупотреблять интернет-ресурсами при общении, предпочитая живому общению. В основном в зоне риска находятся жители мегаполисов, которые предпочитают прогулке по парку кинотеатры или онлайн игры.

Современные дома и квартиры оснащены большим количеством электроприборов, которые представляют угрозу для здоровья его жильцов. Например, бытовая электроплита на расстояний 20–30 см уровень ЭМИ составляет 1–3 мкТл. Обычный бытовой холодильник не выше 0,2 мкТл, если включить режим «no frost» уровень ЭМИ превышает допустимого уровня даже на расстоянии метра от холодильника. Электрические чайники на расстоянии 20 см способны излучить уровнем 0,6 мкТл. Электрические приборы как утюг или стиральная машина не представляют большую опасность при правильной эксплуатаций. При использовании пылесоса возникает излучение 100 мкТл. Самую большим ЭМ-полем обладают электробритвы свыше ста мкТл. СВЧ-печи на расстояний 30 см излучают 8 мкТл. Больше всего — 70 % времени человек проводит с электроприборами, которые обладает слабым ЭМИ. Это могут быть телевизоры, персональный компьютер, фен и т. д. В наше время стало актуальным строительство ЭКО домов, т. е. дома из экологических материалов. Но даже в этих домах в первую очередь проводят электропроводку, что само по себе является источником электромагнитного излучения. Не считая всех электроприборов, интернет-линий, кабельного телевидения и т. д. Если учитывать, что нормой для человека является излучение уровнем 0,2 мкТл, то оказывается, что мы просто окружены опасным количеством ЭМИ.

Читайте также:
Как эффективно и быстро очистить стекло духовки от жира

Нервная система является самым уязвимым местом для ЭМИ. Под влиянием ЭМИ нарушается обмен ионами калия, что вызывает сбой в работе нервной системы. Это создает такие отклонения как: замедление реакций, ухудшение памяти, вызывает депрессию. Уже давно известно, что ЭМИ снижает иммунитет организма, вследствие нарушения производства иммунных клеток.

Большое влияние ЭМИ оказывает также эндокринной системе. Под влиянием ЭМИ происходит стимуляция гипофизарно-адреналовой системы, в результате чего увеличивается уровень адреналина в крови и увеличение его сворачиваемости. Изменение уровня адреналина в крови вызывает изменения на надпочечниках, путем выброса гормона стресса –кортизола. Кортизол в сою очередь вызывает повышенную возбудимость, нарушение сна, перепады настроения, скачки АД, раздражительность и слабость.

Состояние всего человеческого организма тесно связана с качеством крови, которая обладает собственным электрическим потенциалом. ЭМИ провоцирует изменения в крови вызывая слипание или разрушение форменных элементов крови эритроцитов и тромбоцитов. ЭМИ влияет на кроветворные органы, тем самым нарушая образование компонентов последнего. Эти изменения провоцируют выброс адреналина в кровь, а адреналин выброс кортизола. Под влиянием электромагнитного излучения нарушается работа сердца, проводимость миокарда, возникает аритмия, скачет АД.

ЭМИ оказывает большое воздействие на репродуктивную систему. Под влиянием ЭМИ уменьшается подвижность сперматозоидов, а также разрушает сперматозоиды с Y-хромосомой. Но больше всего ЭМИ оказывает на женский организм. ЭМИ сильнее влияют на детей чем на взрослых, в основном на мозг, что связано с большой проводимость мозгового вещества в ранние годы жизни. Электромагнитные волны проникает глубоко в мозг ребенка. Высока вероятность патологий у ребенка до 16 лет под влиянием ЭМИ. В ходе исследование ученных США было установлено что вероятность выкидышей у будущих матерей, которые регулярно подвергались действию ЭМИ, равнялась 80 %. Что и стало доказательством накопительного эффекта ЭМИ, и его разрушительного действия.

Одним самых актуальных вопросов современности является защита от электромагнитного излучения. Невозможно полностью защититься от ЭМИ в современном мире, но можно уменьшить влияние. Опасность ЭМИ заключается в том, что это невидимый процесс. Так как нельзя полностью защититься от ЭМИ, то можно сделать следующее:

− включать электроприборы по очереди;

− не группировать электроприборы, чтобы не усиливать ЭМИ;

− убрать электроприборы с мест наиболее долгого нахождения, как обеденный стол и т. п.;

− убрать радиотелефон дальше от спальни и рабочего стола;

− выбирать электроприборы со стальной поверхностью.

Быть обладателем крепкого здоровья актуально всегда, но не так легко сделать это в настоящее время. Под влиянием ЭМИ человеческий организм испытывает сильнейший стресс. Только стоит задуматься о количестве ЭМИ, которое вы поглощаете за один день, обо всех действиях ЭМИ на наше тело. Каким бы образом ни совершенствовалась медицина в настоящее время, проблема ЭМИ, безусловно, является одной из самых важных в медицине.

  1. Аполлонский, С. М. Безопасность жизнедеятельности человека в электромагнитных полях / С. М. Аполлонский, Т. В. Каляда, Б. Е. Синдаловский. — М.: Политехника, 2008. — 264 c.
  2. Троицкий, В. Л. Влияние ионизирующих излучений на иммунитет / В. Л. Троицкий, М. А. Туманян. — М.: Государственное издательство медицинской литературы, 2017. — 198 c.
  3. Б., Блейк Левитт Защита от электромагнитных полей / Б. Блейк Левитт. — Москва: Гостехиздат, 2017. — 448 c.
Читайте также:
Можно ли держать газовый баллон в квартире: нормы и правила использования баллонного газа

Как защититься от электромагнитного излучения?

Электромагнитная энергия – неотъемлемая часть жизни современного человека. К источникам электромагнитного излучения (ЭМИ) следует отнести смартфоны, планшеты, компьютеры и большую часть бытовой техники. Последствием долгого пребывания в такой среде становится не только головная боль, но и более серьёзные заболевания: опухоли, неправильная работа гормональной системы и некоторые патологические изменения. Защита от электромагнитной энергии обязательна не только на производстве, но и на улице, на работе и даже дома.

Основные источники электромагнитного излучения

С глобальным развитием цифровой техники источники электромагнитных колебаний окружают нас практически везде. Постоянное ношение мобильного телефона, использование ПК на работе и простая поездка в электромобиле становятся серьёзной биологической опасностью для нашего организма.

Распространённые источники электромагнитного излучения

Для снижения уровня электромагнитного загрязнения, необходимо узнать основные его источники и постараться меньше контактировать с ними в дальнейшем.

В помещениях

Перечень приборов бытового и промышленного предназначения с наибольшей интенсивностью излучений:

  • Компьютер. Сегодня ПК находится практически в каждой семье, но немногие пользователи знают, что монитором компьютера передаётся электромагнитная энергия, которая в 500 раз превышает норму.
  • Микроволновая печь. По своей вредности стоит на одном уровне с ПК. Во время работы микроволновой печи окружающее пространство наполняется низкочастотными излучениями в радиусе 1.5-2 метров. В пище, приготовленной в микроволновке, резко снижается количество полезных веществ и витаминов.
  • Смартфоны и планшеты. Гаджеты, которые постоянно находится вместе с современным пользователем. ЭМИ сотовых телефонов ненамного ниже излучений ПК – всего в 250 раз превышает допустимую норму.

Даже нахождение в помещение с разветвлённой электрической проводкой приведёт к нежелательному облучению. Каждый провод, пропускающий электрический ток, также становится причиной вредных воздействий.

Источники ЭМИ в стандартной квартире

На улице

Но не только в помещениях на человека воздействуют электромагнитных волн различных длин и диапазонов. Нежелательное облучение происходит на улице, в торговом центре и даже в общественном транспорте. Приведём несколько примеров:

  • Линии высокого напряжения. Высоковольтные линии прокладывают как в земле, так и по воздуху. Пространство вокруг ЛЭП напряжением 110 кВ, может обладать такой интенсивностью ЭМИ, что на расстоянии 10 м создаст угрозу здоровью человека. Поэтому высоковольтные ЛЭП поднимают на большую высоту или глубоко закапывают в землю. Высоковольтные ЛЭП
  • Высокочастотные передатчики. Например, вышки сотовой связи, которые сейчас установлены практически везде. Или комплексы радиосвязи, установленные в аэропортах. Работая в диапазоне волн от 500 МГц до 15 ГГц, такие электромагнитные устройства постоянно воздействуют на человеческий организм, даже находясь на солидном расстоянии от людей.
  • Спутниковая система. Люди постоянно забывают о линиях спутниковой связи, находящихся на орбите. Сильное излучение таких объектов достигает 200-300 Вт/м2, но при достижении поверхности Земли, луч рассеивается и до людей доходит только малая часть опасного импульса.

Даже поездка в обыкновенном троллейбусе оставит некоторые последствия для самочувствия. Самым вредным считают посещение метро — по своему негативному воздействию оно в 2 раза превышает пребывание в любой разновидности электротранспорта. Электрокары также нельзя отнести к абсолютно безопасному, в плане электромагнитного излучения, типу передвижения. Длительное пребывание в электромобиле можно сравнить с несколькими часами работы за компьютером.

Общие правила защиты от ЭМИ

Надеяться на тот факт, что от воздействия ЭМИ ещё никто не умирал, не стоит. Прямое или косвенное электромагнитное излучение создаёт непоправимые изменения в человеческом организме. Поэтому следует минимизировать количество вредных влияний источников ЭМИ и узнать общие правила защиты.

Самый простой способ – резко сократить расстояние до электромагнитного источника. По внешним его габаритам и принципу действия можно судить о степени вредности. Например, от компьютера достаточно отстраниться на 20-30 см, а от высоковольтной линии передач с большой мощностью излучения следует отбежать на 25-30 метров. Следует обращать внимание на более мелкие источники: отодвигать смартфон от своей подушки на 10-15 см и полностью отказаться от Bluetooth-гарнитуры.

Существует ещё один вариант минимизации электромагнитного излучения – снизить время пребывания рядом с любыми источниками ЭМИ. Проводить за экраном монитора не несколько часов, а по 30-40 минут, делая полезные для глаз перерывы. Отказаться от постоянного сёрфинга в интернете и переписки в социальных сетях. Даже включив простую микроволновую печь, не надо постоянно стоять рядом с ней – лучше заняться другими, более полезными делами.

Читайте также:
Черный кафель на полу

Выключенный, но подсоединённый к сети бытовой прибор также относится к источнику излучения. На концах шнура действует разница потенциалов, создающая вокруг себя электромагнитное поле. А если такой прибор не один, а их несколько в небольшой по своим габаритам квартире? Суммарное воздействие маломощных бытовых приборов через несколько лет станет причиной плохого самочувствия, недосыпания и массы других негативных моментов.

Такие простые способы помогут на порядок снизить воздействие источников ЭМИ и уберечь себя от скорых проблем со здоровьем.

Методы и технические решения защиты от излучения

После ознакомления с общепринятыми правилами по защите от опасного воздействия ЭМИ, следует переходить к узконаправленным техническим решениям. Не всегда простое выключение бытового прибора из розетки приведёт к снижению интенсивности электромагнитного поля в помещении. Иногда следует приобрести устройства или материалы, способные обеспечить эффективное экранирование от опасного излучения.

В частном доме и квартире

Своя квартира или дом – это место, где большая часть людей проводит много времени. И не важно, это отдых или решение бытовых проблем. Защитить своё жилище от пагубного ЭМИ-излучения – первая задача, которую должен поставить перед собой ответственный хозяин.

Перечень технических процедур и решений, помогающих снизить воздействие ЭМИ:

  1. Покупать новые бытовые приборы со стандартной напряжённостью электрического поля. Если проще, то использовать можно только те устройства, уровень электромагнитного излучения которых не доходит до отметки «минимум». Решение простое и полезное. В выборе подобной бытовой техники помогут многочисленные продавцы-консультанты и сертификаты, предоставленные производителем.
  2. Контролировать уровень влажности в помещении, например, с помощью бытового увлажнителя воздуха. Полезная процедура не только в качестве электромагнитной безопасности, но и как профилактика простудных заболеваний. Увлажнитель не следует использовать в паре с ионизаторами – эффект может быть противоположным.
  3. Приобрести для домашнего компьютера защитное устройство – экран. Экран одевается поверх монитора, полностью обезопасить пользователя он не сможет, но снизить уровень ЭМИ – вполне. Разновидностей защитных экранов большое количество, можно быстро подобрать качественный и недорогой вариант. Защитный экран для монитора
  4. Сделать перестановку приборов с повышенным электромагнитным фоном. Примеры:
  • Микроволновая печь должна находится на расстоянии 1-1.5 м от обеденного стола. Её лучше поставить отдельно от части кухни в которой происходит приготовление пищи, её употребление, и мойка посуды.
  • Телевизор, как прибор с наибольшей электромагнитной радиацией, следует переместить в дальний угол комнаты, на расстояние не менее 2 м от кровати или дивана.
  • Безопасное расстояние для Wi-Fi роутера – 1.5-2 м от людей. Нередко роутер вешают в верхнем углу комнаты.

Отдельно следует остановиться на спальне. Многие хозяева квартир и частных домов покупают электрические одеяла с низкой частотой колебаний при работе. Пользоваться подобными электромагнитными вещами следует как можно реже, устанавливая самый низкий уровень мощности.

Уровни или степень облучения у каждого человека разные, поэтому лучше отставить кровать от того места, где в стене проложена электропроводка. Длительное нахождение рядом с проводом, проложенным в стене, через несколько лет приведёт к ухудшению физического здоровья. Кровать должна находится не менее чем в двух метрах от таких мест.

В офисе и на производстве

Основная проблема любого офиса – большое количество мобильных телефонов и компьютеров. При таком количестве, отдельные электромагнитные волны складываются в общий фон и воздействуют на людей. Результат: слишком быстрая усталость организма, повышенная сонливость, малая производительность.

Первое, что необходимо сделать – защитить себя от воздействия низкочастотных волн экрана компьютера. Надо установить защитный экран, выполненный в виде мелкой металлической сетки. Принцип такого экрана похож на клетку Фарадея – он вбирает в себя вредное электромагнитное излучение, защищая пользователя.

Важно обратить на материал экрана компьютера. Наименее вредные ЖК-дисплеи, после них меньше устают глаза, а электромагнитный уровень в пределах допустимого. Но верить в то, что ЖК-экраны абсолютно безопасны, тоже не стоит.

Кондиционеры, электрические чайники, неоновые лампы, в общем всё, что проводит электрическую энергию, излучает электромагнитные импульсы. От таких источников следует отдалиться не менее чем на 1.5-2 метра.

Несколько способов защиты от ЭМИ на производстве:

  1. Электрические агрегаты, машины и станки промышленных частот являются основным источником электромагнитного излучения. Для защиты персонала следует установить небольшое экранирующее устройство, например, металлический козырёк. Также применяют перегородки, сваренные из прутов небольшого диаметра.
  2. Если экранирование помещения невозможно, следует защитить персонал, работающий там. Специальная одежда защищает всю поверхность тела: голову, ноги, руки и туловище. Даже при воздействии различных диапазонов частот.
  3. При ремонтных работах допускается снижение напряжённости электромагнитного поля, путём отключения некоторых узлов или аппаратов. При этом время на ремонт строго ограничено.
Читайте также:
Тиски для сверлильного станка: виды, изготовление своими руками

В некоторых сферах производства применяется лазерное излучение, что по своему негативному воздействию очень похоже на ЭМИ. Способы защиты от него практически ничем не отличаются: спецодежда, переносные или стационарные экраны, специальная защитная сетка.

Искусственные источники ЭМИ наносят наибольший вред при постепенном воздействии на протяжении длительного времени. Поэтому контакт с любыми электронными приборами следует минимизировать или полностью исключить.

Пара полезных советов

Чтобы меньше думать о том, как защитить себя от электромагнитной энергии, необходимо прислушаться к нескольким полезным советам:

  • При покупке недвижимости обязательно узнать о местах прокладки высоковольтных линий передач. Не стоит покупать земельный участок там, где проходят воздушные ЛЭП. У многих хозяев таких домов через несколько лет развиваются сильные головные боли, ухудшается самочувствие.
  • Следует сократить своё пребывание в электрифицированном транспорте. Это не только относится к электрокарам, но также к простому трамваю и троллейбусу. Если расстояние небольшое, то его лучше пройти пешком – нет вредного электромагнитного излучения под ногами и для здоровья полезно.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение?

Электромагнитное излучение – это колебания электрического и магнитного полей. Скорость распространения в вакууме равна скорости света (около 300 000 км/с). В других средах скорость распространения излучения меньше.

Электромагнитное излучение классифицируется по частотным диапазонам. Границы между диапазонами весьма условны, в них нет резких переходов.

  • Видимый свет. Это самый узкий диапазон во всем спектре. Человек может воспринимать только его. Видимый свет сочетает в себе цвета радуги: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. За красным цветом находится инфракрасное излучение, за фиолетовым – ультрафиолетовое, но они уже не различимы человеческим глазом.

Волны видимого света очень короткие и высокочастотные. Длина таких волн – одна миллиардная часть метра или один миллиард нанометров. Видимый свет от Солнца – своеобразный коктейль, в котором смешаны три основных цвета: красный, желтый и синий.

  • Ультрафиолетовое излучение – часть спектра между видимым светом и рентгеном. Ультрафиолетовое излучение используется для создания световых эффектов на сцене театра, дискотеках; банкноты некоторых стран содержат защитные элементы, видимые только при ультрафиолете.
  • Инфракрасное излучение является частью спектра между видимым светом и короткими радиоволнами. Инфракрасное излучение – это скорее тепло, чем свет: каждое нагретое твердое или жидкое тело испускает непрерывный инфракрасный спектр. Чем выше температура нагревания, тем короче длина волны и выше интенсивность излучения.
  • Рентгеновское излучение (рентген) . Волны рентгеновского излучения обладают свойством проходить сквозь вещество и не поглощаться слишком сильно. Видимый свет такой способностью не обладает. Благодаря рентгену некоторые кристаллы могут светиться.
  • Гамма-излучение – это наиболее короткие электромагнитные волны, которые проходят сквозь вещество без поглощения: они могут преодолеть однометровую стену из бетона и свинцовую преграду толщиной в несколько сантиметров.

ВАЖНО! Необходимо избегать рентгеновского и гаммы-излучений, так как они представляют для человека потенциальную опасность.

Шкала электромагнитных излучений

Процессы, происходящие в космосе, и объекты, которые там находятся, порождают электромагнитные излучения. Шкала волн является методом регистрации электромагнитных излучений.

Детальная иллюстрация спектрального диапазона представлена на рисунке. Границы на такой шкале условны.

Основные источники электромагнитного излучения

  • Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
  • Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
  • Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
  • Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.

Излучение от бытовых электроприборов

Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.

  • Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
  • Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
  • Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
  • Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
  • Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
  • Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
  • Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
  • Электропроводка и розетки.Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
  • Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.
Читайте также:
Межкомнатные двери с зеркалом: выбор в различных стилях

Установленные нормы ЭМИ для человека

Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.

Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.

Вот безопасные для здоровья нормы:

  • 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
  • 0,3-3 МГц, при напряженности 15 В/м,
  • 3-30 МГц – напряженность 10 В/м,
  • 30-300 МГц – напряженность 3 В/м,
  • 300 МГц-300 ГГц – напряженность 10 мкВт/см 2 .

При таких частотах работают гаджеты, радио- и телеаппаратура.

Воздействие электромагнитных лучей на человека

Нервная система чрезвычайна чувствительна к влиянию электромагнитных лучей: нервные клетки уменьшают свою проводимость. В результате ухудшается память, притупляется чувство координации.

При воздействии ЭМИ на человека не только подавляется иммунитет – он начинает атаковать организм.

ВАЖНО! Для беременных женщин электромагнитное излучение представляет особую опасность: снижается скорость развития плода, появляются дефекты в формировании органов, велика вероятность преждевременных родов.

Защита от электромагнитных излучений

  • Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
  • Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до отметки «минимум». Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
  • Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
  • Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
  • Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.

Как проверить уровень электромагнитного излучения в домашних условиях

Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: