Электрический ток в газах и жидкостях

Электрический ток в жидкостях, в полупроводниках, в вакууме, в газах

теория по физике постоянный ток

Напоминаем, что в каждой среде есть свои носители электрических зарядов. В металлах ими служат свободные электроны, в электролитах — положительные и отрицательные ионы, в газах — ионы и электроны, полупроводниках — электроны и дырки, в вакууме — электроны. Электрический ток может течь с переносом и без переноса вещества. Перенос вещества осуществляется только ионами.

Электрический ток в электролитах

Электролиты — жидкости, проводящие электрический ток. К ним относят растворы солей, щелочей и кислот.

Положительные ионы (катионы) движутся к катоду, а отрицательные (анионы) — к аноду.

Пример №1. Электрическая цепь, изображенная на рисунке, включает в себя сосуд со слабым раствором поваренной соли (NaCl) и опущенными в него двумя электродами. В каком направлении (вправо, влево, вверх, вниз) будут двигаться ионы натрия при замыкании ключа:

При замыкании ключа в растворе соли начнут образовываться ионы: положительные в виде Na + и отрицательные в виде Cl – . Положительные ионы будут двигаться к отрицательному электроду (катоду), т.е. вправо.

Электрический ток в полупроводниках

К полупроводникам относят элементы четвертой группы таблицы химических элементов Д.И. Менделеева, которые имеют 4 валентных электрона. Собственная проводимость полупроводников — электронно-дырочная.

При низкой температуре все электроны участвуют в создании ковалентных связей, свободных электронов нет, и полупроводник ведет себя как диэлектрик. При повышении температуры или облучении полупроводников часть ковалентных связей разрушается, и появляются свободные электроны. На месте разрушенной связи возникает электронная вакансия — дырка. Она также перемещается по кристаллу и ведет себя подобно положительной частице.

Зависимость удельного сопротивления полупроводников от температуры и внешнего излучения показана на графике.

В полупроводниках также может осуществляться примесная проводимость.

Донорные примеси — это элементы пятой группы таблицы химических элементов Д.И. Менделеева. Только 4 из 5 валентных электрона участвуют в создании ковалентных связей. Остальные сразу становятся свободными. Полупроводник, основными носителями в котором являются отрицательные электроны, относятся к полупроводникам n-типа.

Акцепторные примеси — элементы третьей группы таблицы химических элементов Д.И. Менделеева. Три валентных электрона устанавливают ковалентные связи, а не месте четвертой появляется дырка. Полупроводник с положительными носителями относится к полупроводникам p-типа.

Применение полупроводниковых приборов

Термисторы — приборы, сопротивление которых изменяется при нагревании. Они позволяют определять малые изменения температуры.

Фоторезисторы — приборы, аналогичные термисторам, но сопротивление в них изменяется не при изменении температуры, а при изменении освещенности.

Полупроводниковый диод — соединение полупроводников двух типов. Обладает односторонней проводимостью.

Электрический ток в вакууме

Получение основных носителей происходит за счет термоэлектронной эмиссией.

Термоэлектронная эмиссия — процесс испускания электронов при нагревании катода до высокой температуры.

Свойства электронных пучков:

  • вызывают нагревание тел;
  • при торможении возникает рентгеновское излучение;
  • при попадании на некоторые вещества (люминофоры) вызывают их свечение;
  • направление электронов может изменять под действием электрического и магнитного полей.

Электрический ток в газах

Электрический ток в газах называют разрядом. Обычно газы состоят из нейтральных молекул, поэтому они являются диэлектриками. Чтобы появились носители электрического заряда, необходима затрата энергии.

Несамостоятельный разряд. При нагреве газа или при облучении его атомов могут отделиться электроны, и атомы превращаются в положительные ионы.

Самостоятельный разряд. В газах при столкновении молекул может освободиться хотя бы один электрон. Если он попадет в электрическое поле, то начнет двигаться с ускорением. Сталкиваясь с нейтральным атомом газа, ускоренный электрон может «выбить» из него другой электрон, превратив сам атом в положительный ион. Электроны будут и дальше ускоряться, разрушая атомы. Ионы создают ток в противоположном направлении. Таким образом, электрический ток в газах создается электронами и ионами.

На рис. 1 изображена зависимость силы тока через светодиод D от приложенного к нему напряжения, а на рис. 2 – схема его включения. Напряжение на светодиоде практически не зависит от силы тока через него в интервале значений 0,05 А

Электрический ток в газах и жидкостях

Электрический ток в металлах

Металлы являются хорошими проводниками электричества. Это обусловлено их внутренним строением. У всех металлов внешние валентные электроны слабо связаны с ядром, и при объединении атомов в кристаллическую решетку эти электроны становятся общими, принадлежащими всему куску металла.

Носителями заряда в металлах являются электроны .

Электроны в металлах при помещении их в электрическое поле движутся с постоянной средней скоростью, пропорциональной напряженности поля.

Зависимость сопротивления проводника от температуры

При повышении температуры у электронов проводимости увеличивается скорость теплового движения, что приводит к увеличению частоты столкновений с ионами кристаллической решетки и, тем самым, к росту сопротивления.

Сверхпроводимость – явление резкого уменьшения до нуля сопротивления проводника при охлаждении до критической температуры (зависящей от рода вещества).

Сверхпроводимость – это квантовый эффект. Объясняется он тем, что при низких температурах макроскопическое число электронов ведут себя как единый объект. Они не могут обмениваться с кристаллической решеткой порциями энергии, меньшими их энергии связи, поэтому рассеивания тепловой энергии не происходит, что и означает отсутствие сопротивления.

Такое объединение электронов возможно при образовании ими бозонных (куперовских) пар – коррелированного состояния электронов с противоположными спинами и импульсами.

Эффект Мейснера – вытеснение магнитного поля из сверхпроводника. Внутри проводника в сверхпроводящем состоянии циркулируют незатухающие токи, создающие магнитное поле, противоположное внешнему. Сильное магнитное поле разрушает сверхпроводимость.

Электрический ток в жидкостях

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества

Читайте также:
Шторы в деревенском стиле

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. Хлор выделяется на аноде в виде пузырьков.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году (закон Фарадея)

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

m – масса выделившегося в результате электролиза чистого вещества

k – электрохимический эквивалент вещества

Здесь NA – постоянная Авогадро, M = mNA – молярная масса вещества,
F = eNA=96485 Кл/мольпостоянная Фарадея

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества

Закон Фарадея для электролиза

Электрический ток в газах

При обычных условиях все газы являются диэлектриками, то есть не проводят электрического тока. Этим свойством объясняется, например, широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников как раз и основан на том, что размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток.

Однако при определенных условиях газы могут становиться проводниками. Например, пламя, внесенное в пространство между двумя металлическими дисками (см. рисунок), приводит к тому, что гальванометр отмечает появление тока. Отсюда следует вывод: пламя, то есть газ, нагретый до высокой температуры, является проводником электрического тока.

Нагревание – не единственный способ превращения газа в проводник. Вместо пламени можно использовать ультрафиолетовое или рентгеновское излучение, а также поток альфа-частиц или электронов. Опытами установлено, что действие любой из этих причин приводит к ионизации молекул газа.

Прохождение тока через газы называют газовым разрядом. Только что мы рассмотрели пример так называемого несамостоятельного разряда. Он так называется потому, что для его поддержания требуется какой-либо ионизатор – пламя, излучение или поток заряженных частиц. Опыты показывают, что если ионизатор устранить, то ионы и электроны вскоре воссоединяются (говорят: рекомбинируют), вновь образуя электронейтральные молекулы. В результате газ перестает проводить ток, то есть становится диэлектриком.

Самостоятельная и несамостоятельная проводимость газов

Для того чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость.

В случае несамостоятельной проводимости, при небольших значениях U график имеет вид прямой, т.е. закон Ома приближенно сохраняет силу; с ростом U кривая загибается с некоторого напряжения и переходит в горизонтальную прямую.

Это означает, что начиная с некоторого напряжения, ток сохраняет постоянное значение, несмотря на увеличение напряжения. Это постоянное, не зависящее от напряжения значение силы тока называют током насыщения.

Несамостоятельный газовый разряд – разряд, существующий только под действием внешних ионизаторов.

При увеличении напряжения возникает ударная ионизация – явление выбивания электронов из нейтральных молекул – число носителей заряда увеличивается лавинообразно. Возникает самостоятельный разряд.

Самостоятельный газовый разряд – разряд, существующий после удаления внешних ионизаторов.

Процессы, влияющие на проводимость газов

Термическая ионизация – при столкновении нейтральных атомов происходит выбивание электронов и превращение атомов в положительные ионы

Ионизация излучением (фотоионизация) – распад атома на электрон и положительный ион под действием света

Ионизация электронным ударом – выбивание ускоренным электроном из атома электрона с образованием положительного иона

Вторичная электронная эмиссия с катода – выбивание положительными ионами электронов из катода

Термоэлектронная эмиссия – излучение нагретым металлом электронов

Тлеющий разряд: При давлении газа в несколько десятых миллиметра ртутного столба разряд имеет типичный вид, схематически изображённый на рис. Это ток в ионизированном газе, а точнее сказать в низкотемпературной плазме. Тлеющий разряд образуется при прохождении тока через разряженный газ. Как только напряжение превосходит определённое значение, газ в колбе ионизирует и происходит свечение. Это уже по сути электрический ток не столько в газе, сколько в плазме. Цвет свечения газа (плазмы) зависит от вещества газа.

Искровой разряд: При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Происходит при обычных условиях, при обычном атмосферном давлении, точно также как и тлеющий разряд происходит в следствие ионизации газа, но при высоком напряжении, в отличии от дугового разряда, где в первую очередь важна высокая плотность тока.

Коронный разряд: происходит в сильном электрическом поле с высокой напряжённостью, достаточной, чтобы вызвать ионизацию газа (или жидкости). Электрическое поле при этом бывает не однородным, где-то напряжённость значительно больше. Образуется градиент (различие) потенциалов поля и там где потенциал больше, ионизация газа идёт сильнее, интенсивнее, затем поток ионов доходит до другой части поля, тем самым образуя поток электричества. В результате образуется коронный газовый разряд причудливых форм, в зависимости от геометрии проводников — источников напряжённости поля.

Дуговой разряд: представляет собой электрический пробой газа, которой в дальнейшем становится постоянным плазменным разрядом — дугой, образуется электрическая дуга. Дуговой разряд характеризуется более низким напряжением, чем тлеющий разряд. Поддерживается в основном за счёт термоэлектронной эмиссии, когда из электродов высвобождаются электроны. Старое название такой дуги «вольтовая дуга». Отличительной особенностью такой дуги является высокая плотность тока и низкое напряжение, которое ограничено источником тока. Для того, чтобы создать такую дугу, электроды сближаются, происходит пробой, а затем они раздвигаются.

Читайте также:
Цена сайдинга за квадратный метр

Электрический ток в газах и жидкостях

Электрическим током называют всякое упорядоченное движение электрических зарядов. Электрический ток может проходить через различные вещества при определенных условиях. Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля.

Поэтому в этом разделе мы попытаемся установить, какие частицы, переносят электрический заряд в различных средах.

Электрический ток в металлах.

Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ .

Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля.

Следовательно, электрический ток в металлах – это упорядоченное движение электронов.

Сила тока в металлическом проводнике определяется по формуле:

где I – сила тока в проводнике, e – модуль заряда электрона, n – концентрация электронов проводимости, – средняя скорость упорядоченного движения электронов, S – площадь поперечного сечения проводника.

Плотность тока проводимости численно равна заряду, проходящему за 1с через единицу площади поверхности, перпендикулярной направлению тока.

где j – плотность тока.

У большинства металлов практически каждый атом ионизирован. А так как концентрация электронов проводимости одновалентного металла равна

где Na – постоянная Авогадро, A – атомная масса металла, ρ – плотность металла,

то получаем что концентрация определяется в пределах 10 28 – 10 29 м -3 .

Закон Ома для однородного участка цепи:

где U – напряжение на участке, R – сопротивление участка.

Для однородного участка цепи:

где ρ У – удельное сопротивление проводника , l – длина проводника, S – площадь поперечного сечения проводника.

Удельное сопротивление проводника зависит от температуры и эта зависимость выражается соотношением:

ρу = ρоу ( 1 + α ∆Т )

где ρоу – удельное сопротивление металлического проводника при температуре Т =273К, α – термический коэффициент сопротивления, ∆Т = Т – Т о изменение температуры.

Вольт-амперная характеристика металлов.

Сила тока в проводниках по закону Ома прямо пропорциональна напряжению. Такая зависимость имеет место для проводников со строго заданным сопротивлением ( для резисторов ).

Тангенс угла наклона графика равен проводимости проводника. Проводимостью называется величина, обратная сопротивлению

где G – проводимость.

Но так как сопротивление металлов зависит от температуры, то вольт-амперная характеристика металлов не является линейной.

Электрический ток в растворах и расплавах электролитов.

Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией . Полученные в следствие распада ионы служат носителями заряда в жидкости, а сама жидкость становятся проводником.

Вне электрического поля ионы движутся хаотически. Под действием внешнего электрического поля ионы, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля: катионы к катоду, анионы – к аноду.

Следовательно, электрический ток в растворах (расплавах) электролитов – это направленное перемещение ионов обоих знаков в противоположных направлениях.

Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом .

При движении внутри электролитов ионы взаимодействуют с молекулами воды и другими ионами, т.е. электролиты оказывают некоторое противодействие движению, а, следовательно, обладают сопротивлением. Электрическое сопротивление электролитов зависит от концентрации ионов, величины заряда иона, от скорости движения ионов обоих знаков.

Сопротивление электролитов так же определяется по формуле:

где ρ У – удельное сопротивление электролита , l – длина жидкого проводника, S – площадь поперечного сечения жидкого проводника.

При увеличении температуры электролита уменьшается его вязкость, что ведет к увеличению скорости движения ионов. Т.е. при повышении температуры сопротивление электролита уменьшается.

Законы Фарадея.

1. Масса вещества, выделяемого на электроде, прямо пропорциональна электрическому заряду, прошедшему через электролит.

где m – масса вещества, выделяющегося на электроде, k – электрохимический эквивалент, q – заряд, прошедший через электролит.

2. Электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту.

где М– молярная масса вещества, F- постоянная Фарадея, z – валентность иона.

постоянная Фарадея численно равна заряду, который должен пройти через электролит, чтобы выделить из него массу вещества, численно равную химическому эквиваленту.

Объединенный закон Фарадея.

Электрический ток в газах.

При нормальных условиях газы состоят из нейтральных молекул, а поэтому являются диэлектриками. Так как для получения электрического тока необходимо наличие заряженных частиц, то молекулы газа следует ионизировать (оторвать электроны от молекул). Для ионизации молекул необходимо затратить энергию – энергию ионизации , количество которой зависит от рода вещества. Так, энергия ионизации минимальна для атомов щелочных металлов, максимальна – для инертных газов.

Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной энергии возрастает скорость движения молекул, нарастает интенсивность их теплового движения и при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы.

Электроны, оторвавшись от молекулы могут присоединятся к нейтральным молекулам, образуя при этом отрицательно заряженные ионы.

Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.

Читайте также:
Точечные светильники с галогенными лампами в интерьере

Под действием внешнего электрического поля ионы обоих знаков и электроны движутся в направлении действия сил электрического поля: положительные ионы к катоду, отрицательные ионы и электроны – к аноду. Т.е. электрический ток в газах – это упорядоченное движение ионов и электронов под действием электрического поля.

Вольт- амперная характеристика газов.

Зависимость силы тока от напряжения выражена кривой ОАВС.

На участке графика ОА сила тока подчиняется закону Ома. При малом напряжении сила тока мала, т.к. ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения между электродами скорость направленного движения электронов и ионов возрастает, поэтому большая часть заряженных частиц достигает электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U 1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2 . Такой ток называют током насыщения , и ему соответствует участок графика АВ.

При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда кинетическая энергия достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Дополнительная ионизация приводит к лавинообразному увеличению количества заряженных частиц, а следовательно и к значительному увеличению силы тока без воздействия внешнего ионизатора. Прохождение электрического тока без воздействия внешнего ионизатора называют самостоятельным разрядом . Такая зависимость выражена участком графика АС.

Электрический ток в вакууме.

В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е. необходимо создать определенные условия, которые помогут получить заряженные частицы.

Свободные электроны есть в металлах. При комнатной температуре они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода . Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур.

При нагревании металла количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией . Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная к источнику тока нить раскаляется и с ее поверхности вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток.

Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода.

Вакуумный диод Вакуумный триод

Вольт-амперная характеристика вакуумного диода.

Зависимость силы тока от напряжения выражена кривой ОАВС D .

При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны. При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у катода электронное облако.

По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ является характеризует прямую зависимость силы тока от напряжения, т.е. в интервале напряжений U1 – U2 выполняется закон Ома.

Нелинейная зависимость на участке ВС D объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода.

При достаточно большом значении напряжения U3 все электроны, вылетающие с катода, достигают анода, и электрический ток достигает насыщения.

Так же в качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток.

Таким образом, электрический ток в вакууме может быть создан упорядоченным движением любых заряженных частиц (электронов, ионов) .

Электрический ток в полупроводниках.

Полупроводники – вещества, удельное сопротивление которых убывает с увеличением температуры и зависит от наличия примесей и изменения освещенности. Удельное сопротивление проводников при комнатной температуре находится в интервале от 10 -3 до 10 7 Ом • м. Типичными представителями полупроводников являются кристаллы германия и кремния.

В этих кристаллах атомы соединены между собой ковалентной связью. При нагревании ковалентная связь нарушается, атомы ионизируются. Это обуславливает возникновение свободных электронов и “дырок”- вакантных положительных мест с недостающим электроном.

При этом электроны соседних атомов могут занимать вакантные места, образуя “дырку” в соседнем атоме. Таким образом не только электроны, но и “дырки” могут перемещаться по кристаллу. При помещении такого кристалла в электрическое поле электроны и дырки придут в упорядоченное движение – возникнет электрический ток.

Собственная проводимость.

В чистом кристалле электрический ток создается равным количеством электронов и “дырок”. Проводимость, обусловленную движением свободных электронов и равного им количества “дырок” в полупроводниковом кристалле без примесей, называют собственной проводимостью полупроводника .

При повышении температуры собственная проводимость полупроводника увеличивается, т.к. увеличивается число свободных электронов и “дырок”.

Примесная проводимость.

Проводимость проводников зависит от наличия примесей. Примеси бывают донорные и акцепторные. Донорная примесь – примесь с большей валентностью. Например, для четырехвалентного кремния донорной примесью является пятивалентный мышьяк. Четыре валентных электрона атома мышьяка участвуют в создании ковалентной связи, а пятый станет электроном проводимости.

При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и “дырки”. Поэтому в кристалле количество свободных электронов преобладает над количеством “дырок”. Проводимость такого проводника является электронной, полупроводник является п олупроводником n -типа . Электроны являются основными носителями заряда, “дырки” – неосновными .

Читайте также:
Экономичность кондиционера

Акцепторная примесь – примесь с меньшей валентностью. Например, для четырехвалентного кремния акцепторной примесью является трехвалентный индий. Три валентных электрона атома индия участвуют в создании ковалентной связи с тремя атомами кремния, а на месте четвертой незавершенной ковалентной связи образуется “дырка”.

При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и “дырки”. Поэтому в кристалле количество “дырок” преобладает над количеством свободных электронов. Проводимость такого проводника является дырочной, полупроводник является полупроводником p -типа . “Дырки” являются основными носителями заряда, электроны – неосновными .

p-n переход.

При контакте полупроводников p- типа и n -типа через границу происходит диффузия электронов из n -области в p- область и “дырок” из p- области в n -область. Это приводит к возникновению запирающего слоя, препятствующего дальнейшей диффузии. p-n переход обладает односторонней проводимостью.

При подключении p-n перехода к источнику тока так, чтобы p- область была соединена с положительным полюсом , а n-область – с отрицательным полюсом, появляется движение основных носителей зарядов через контактный слой. Этот способ подключения называют включением в прямом направлении.

При подключении p-n перехода к источнику тока так, чтобы p- область была соединена с отрицательным полюсом , а n-область – с положительным полюсом, толщина запирающего слоя увеличивается, и движение основных носителей зарядов через контактный слой прекращается, но может иметь место движение неосновных зарядов через контактный слой. Этот способ подключения называют включением в обратном направлении.

Принцип действия полупроводникового диода основан на свойстве односторонней проводимости p-n перехода. Основное применение полупроводникового диода – выпрямитель тока.

Вольт-амперная характеристика полупроводникового диода.

Зависимость силы тока от напряжения выражена кривой АОВ.

Ветвь ОВ соответствует пропускному направлению тока, когда ток создается основными носителями зарядов, и при увеличении напряжения сила тока возрастает. Ветвь АО соответствует току, созданному неосновными носителями зарядов, и значения силы тока невелики.

Электрический ток в различных средах
презентация к уроку на тему

Видеопрезентация содержит сводно- обобщающую информацию на тему “Электрический ток в различных средах”

Скачать:

Вложение Размер
elektricheskiy_tok_v_razlichnyh_sredah.ppt 296 КБ
Предварительный просмотр:

Подписи к слайдам:

ГБПОУ ВО «Бутурлиновский механико- технологический колледж» Презентация на тему: “ Электрический ток в различных средах ” Выполнил: преподаватель физики Ковалева Елена Павловна

Электрический ток может протекать в пяти различных средах: Металлах Вакууме Полупроводниках Жидкостях Газах

Электрический ток в металлах: Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Опыты Толмена и Стюарта являются доказательством того, что металлы обладают электронной проводимостью Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

Выводы: 1.носителями заряда в металлах являются электроны; 2. процесс образования носителей заряда – обобществление валентных электронов; 3.сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома; 4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Электрический ток в вакууме Вакуум – сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла. В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.

На слайде показано включение двухэлектродной лампы Такая лампа называется вакуумный диод

Эта электронная лампа носит название вакуумный ТРИОД. Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов .

Выводы: 1. носители заряда – электроны; 2. процесс образования носителей заряда – термоэлектронная эмиссия; 3.закон Ома не выполняется; 4.техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.

Электрический ток в полупроводниках При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов. полупроводники представляют собой нечто среднее между проводниками и изоляторами. Полупроводники – твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения).

С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами. Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Собственная проводимость полупроводников Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам .Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Образование электронно-дырочной пары При повышении температуры или увеличении освещенности некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название « дырок ».

Примесная проводимость полупроводников Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную проводимости.

Электронная и дырочная проводимости . Если примесь имеет валентность большую, чем чистый полупроводник, то появляются свободные электроны. Проводимость – электронная, примесь донорная, полупроводник n – типа. Если примесь имеет валентность меньшую, чем чистый полупроводник, то появляются разрывы связей – дырки. Проводимость – дырочная, примесь акцепторная, полупроводник p – типа.

Выводы: 1. носители заряда – электроны и дырки; 2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей; 3.закон Ома не выполняется; 4.техническое применение – электроника.

Электрический ток в жидкостях Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов. График зависимости сопротивления электролита от температуры.

Явление электролиза – это выделение на электродах веществ, входящих в электролиты; Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) – к положительному аноду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция ) На катоде положительные ионы получают недостающие электроны (восстановительная ).

Законы электролиза Фарадея. Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит. k – электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

Выводы: 1. носители заряда – положительные и отрицательные ионы; 2. процесс образования носителей заряда – электролитическая диссоциация; 3 .электролиты подчиняются закону Ома; 4.Применение электролиза : получение цветных металлов (очистка от примесей – рафинирование); гальваностегия – получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д. ); гальванопластика – получение отслаиваемых покрытий (рельефных копий).

Электрический ток в газах Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток. В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Прохождение электрического тока через газ называется разрядом . Разряд, существующий при действии внешнего ионизатора, – несамостоятельный. Если действие внешнего ионизатора продолжается, то через определенное время в газе устанавливается внутренняя ионизация (ионизация электронным ударом) и разряд становится самостоятельным .

Виды самостоятельного разряда: ИСКРОВОЙ ТЛЕЮЩИЙ КОРОННЫЙ ДУГОВОЙ

Искровой разряд При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.

Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере. Уже в середине 18-го века высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-1765), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Электрическая дуга (дуговой разряд) В 1802 году русский физик В.В. Петров (1761-1834) установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскалятся добела, испуская ослепительный свет.

Выводы: 1. носители заряда – положительные, отрицательные ионы и электроны; 2. процесс образования носителей заряда – ионизация внешним ионизатором или электронным ударом; 3 .газы не подчиняются закону Ома; 4.Техническое применение: дуговая электросварка, коронные фильтры, искровая обработка металлов, лампы дневного света и газосветная реклама.

По теме: методические разработки, презентации и конспекты

Конспект урока по экологии “Среда обитания и факторы среды. Общие закономерности действия факторов среды на организмы. Популяция. Экосистема. Биосфера”.

Подробная разработка урока экологии, где учащиеся закрепляют понятия об экологических факторах и их классификацию. Изучается влияние этих факторов на живые организмы; дается понятие .

Правила построения электрических схем. Монтаж электрических схем

Правила построения электрических схем. Монтаж электрических схем.

Разработка теста по теме «Учет и контроль электрической энергии» в среде MуTestX Pro

В данной работе моделируется ситуация учета электроэнергии потребителем при возникновении проблем с приборами учета. Для примера рассматривается однофазная цепь с частично неисправным ваттметром (повр.

МАСТЕР – КЛАСС Тема : Моделирование электрических цепей по курсу дисциплины «Электротехника и электроника» в виртуальной среде с помощью программы Electronics Workbench (EWB)

Изучение программы-симулятора электронных схем «Electronics Workbench», которая используется при проведении лабораторных работ по дисциплине «Электротехника и электроника» намного упрощает их про.

РАБОЧАЯ ПРОГРАММА МДК 01.02 Основы технической эксплуатации и обслуживания электрического и электромеханического оборудования ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.01 Организация технического обслуживания и ремонта электрического и электромеханического оборудовани

Примерная программа профессионального модуля (далее примерная программа) – является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 13.0.

РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.01 ОРГАНИЗАЦИЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханическо

Рабочая программа профессионального модуля разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образовани.

МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ МДК.01.02 ОСНОВЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ И ОБСЛУЖИВАНИЯ ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ ПМ.01 Организация технического обслуживания и ремонта электрического и электромеханического о

МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ МДК.01.02 ОСНОВЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ И ОБСЛУЖИВАНИЯ ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ ПМ.01 Организация техническ.

Электропроводность жидкостей и газов

Сначала рассмотрим электрический ток в жидкостях. В § 8-а мы обсудили распад молекул серной кислоты на отдельные ионы при её растворении в воде: ионы водорода и сульфат-ионы. Порождать ионы могут и молекулы других веществ, например поваренной соли. При её растворении или расплавлении происходит распад электронейтральных молекул на заряженные ионы: NaCl → Na + + Cl – .

Поместим раствор или расплав соли в ванну, в которой есть электроды, соединённые с «+» и «–» источника электроэнергии (см. рисунок). Под действием сил электрического поля, существующего между электродами, ионы натрия и хлора начнут встречное движение.

Убедиться, что жидкости могут проводить ток, можно простым опытом: включив лампочку в разрыв провода, идущего от ванны к источнику. Однако опыты, подтверждающие движение ионов, находятся «на стыке» физики и ещё не изученных вами разделов химии. Поэтому вам придётся поверить нам на слово и запомнить: электропроводность жидкостей (кроме тех, молекулы которых состоят из одного атома) обусловлена встречным движением их положительных и отрицательных ионов. Такое перемещение ионов внутри жидкости обычно приводит к химическим реакциям на поверхностях обоих электродов.

Рассмотрим теперь электрический ток в газах. Проделаем опыт с прибором «Разряд». Он служит для электризации тел, подобно заряженным палочкам из эбонита или стекла, но не «одноразово», а непрерывно длительное время (рис.а). Поэтому соединённые с ним тела приобретают гораздо больший заряд, чем при электризации палочками.

Присоединим к работающему «Разряду» два металлических шара, между которыми промежуток воздуха. Лепестки электроскопа «поднимутся», отмечая увеличение заряда шаров (рис.а). Через несколько секунд шары наэлектризуются настолько сильно, что проскочит искра, и лепестки электроскопа «опадут» (рис.б). Это показывает, что воздух между шарами, бывший диэлектриком, стал проводником на короткое время проскакивания искры.

Возникает вопрос: почему искры проскакивают только время от времени, превращая воздух из диэлектрика в проводник, и как это вообще происходит? Во-первых, лепестки электроскопа после опадания поднимаются плавно, свидетельствуя о постепенном нарастании зарядов шаров. По сути, они представляют собой конденсатор, которому требуется некоторое время, чтобы накопить заряд.

Во-вторых, в физике и химии установлено, что ионизация веществ может происходить не только при растворении и расплавлении, но и под действием электрического поля. Сильное поле способно оторвать от молекулы электрон(ы), поэтому она становится ионом (см. рисунок). Под действием сил поля положительные ионы устремляются к отрицательно заряженному шару, а электроны – к положительному, по пути «выбивая» новые электроны из других молекул. Так возникает искра, поскольку количество заряженных частиц лавинообразно нарастает (см. рисунок ниже).

Встречное движение ионов и электронов в искре – это электрический ток. Его и сопутствующие явления называют искровым разрядом. Слово «разряд» подчёркивает, что заряды шаров уменьшаются (за счёт переноса ионами положительного заряда на отрицательно заряженный шар, а электронами – отрицательного заряда на положительно заряженный шар). Резко «опадающие» лепестки электроскопа показывают, что разряд шаров происходит очень быстро. Как только сильное поле между шарами исчезает, искра прекращается. В физике это объясняют тем, что электроны и ионы рекомбинируют – объединяются в нейтральные молекулы, и воздух снова становится диэлектриком.

Таким образом, электропроводность газов обусловлена встречным движением ионов и электронов. Наряду с искровым разрядом, схему которого мы рассмотрели, в газах могут происходить дуговой, тлеющий и коронный разряды. Предлагаем вам самостоятельно подготовить доклады на эти темы, используя интернет-ресурсы и литературу.

ТОП—7. Лучший теплый пол под ламинат (электрический, инфракрасный, пленочный, сухой монтаж). Рейтинг 2020 года!

Здравствуйте! Сегодня я расскажу вам о лучших теплых полах под ламинат. В этот ТОП-7 вошла продукция известных мировых производителей, пользующаяся большой популярностью как у рядовых покупателей, так и у профессионалов. Я расскажу об основных преимуществах и особенностях каждого теплого пола. Поехали!

  1. Caleo PLATINUM
  2. Теплолюкс Express
  3. Caleo GOLD
  4. Теплолюкс Alumia
  5. Electrolux ETS 220
  6. EASTEC Energy Save
  7. Caleo Silver

Caleo PLATINUM

Первый герой нашего ТОПа – теплый пол Caleo PLATINUM, пленочного типа, производимый в Южной Корее. Его пленочные секции идеально подходят для укладки под ламинат, а также под другие напольные покрытия: ковролин, паркетная доска или линолеум. Его монтаж не требует стяжки и клея, а благодаря повышенной прочности применяемых в нем материалов, он без проблем выдерживает вес даже очень тяжелой мебели. Из особенностей теплого пола Caleo PLATINUM стоит отметить саморегуляцию мощности. Он не перегревается и может в 6 раз снижать энергопотребление. А применяемый в нем инфракрасный принцип обогрева не будет сушить воздух в помещении. Поэтому с таким полом в квартире или доме не будет душно и не придется часто открывать окна. В комплекте с полом, помимо рулона с пленкой, идут контактные зажимы и битумная изоляция на каждый квадратный метр, соединительные провода, а также изоляция ПВХ. Большинство владельцев довольны качеством обогрева этого пола, но вот что касается монтажа, то многие отмечают, что комплектных проводов мало и в некоторых ситуациях их попросту не хватает. Впрочем, это единственный минус этого теплого пола и если он вас не смущает, и вам хочется простой в установке и эффективный в нагреве теплый пол, то Caleo PLATINUM станет отличным приобретением.

  • Тип: инфракрасный пленочный.
  • Способ укладки: без стяжки.
  • Площадь обогрева: 2 м.кв.
  • Мощность: 230 Вт/м.кв.
  • Размеры пленки: 0.5 х 4 м.
  • Класс защиты: IP57.
  • Гарантия: 50 лет.
  • Саморегуляция мощности.
  • Высокая прочность.

Теплолюкс Express

Следующий герой нашего ТОПа – Теплолюкс Express. Он представляет собой нагревательный мат на основе тонкого нагревательного кабеля в герметичной защитной оболочке. Этот теплый пол не требует монтажа, а просто кладется на пол и подключается к сети 220 Вольт. А сверху на него можно будет положить ковер. Он подходит для любого пола, будь то деревянная и паркетная доска, ламинат, линолеум или различные виды плитки. Благодаря мобильности Теплолюкс Express и его компактным размерам в свернутом состоянии, его можно взять с собой на дачу ил гостиничный номер. Также, он будет актуален в семьях с маленькими детьми. Выпускается Теплолюкс Express в трех типоразмерах, позволяя нагреть участок площадью 1,4, 2,8 или 5 квадратных метров. Владельцы отзываются о нем строго положительно и каких-либо негативных отзывов по нему нет. Так что могу смело рекомендовать такой теплый дом. Он станет отличным приобретением в межсезонье, когда еще не работает центральное отопление, на даче, да и в обычных квартирах, где не хватает тепла от батарей.

  • Тип: электрический.
  • Способ укладки: без монтажа.
  • Площадь обогрева: 1.4 — 5 м.кв.
  • Класс защиты: IPХ7.
  • Гарантия: 50 лет.

Caleo GOLD

Продолжает наш ТОП лучших теплых полов – Caleo GOLD. Он станет идеальным решением для полов из ламината, а также может быть использован под ковролином, паркетом или линолеумом. Этот теплый пол инфракрасного типа, примечателен технологией саморегуляции, благодаря которой, при увеличении температуры пола потребляемая мощность снижается в 1,5 — 2 раза, что гарантирует быстрый нагрев при меньшем потреблении электроэнергии. Так что возросших счетов за коммунальные услуги с таким теплым полом у вас не будет. Также стоит отметить, что инфракрасный принцип обогрева не сушит воздух в помещении и обладает антиаллергенным эффектом. Кроме того, в Caleo GOLD применяется антиискровая серебряная сетка. Использование данной технологии придает термопленке особую надежность, благодаря отсутствию соединения «холодных» и «горячих» контактов. Выпускается этот теплый пол в двух модификациях – мощностью на 170 и 230 Ватт на квадратный метр. Первая модификация подойдет для гостиных, спален и детских комнат. А вторая модификация будет актуальна для первых этажей зданий или неотапливаемых помещений, таких как балконы. Из других особенностей Caleo GOLD стоит отметить простой монтаж, не требующий стяжек и клея. В комплекте с полом есть все необходимое: соединительные провода, контактные зажимы и битумная изоляция на каждый квадратный метр. В общем, отличный вариант для дома, который заслуженно имеет множество положительных отзывов.

  • Тип: инфракрасный пленочный.
  • Способ укладки: без стяжки.
  • Площадь обогрева: 2 м.кв.
  • Мощность: 170/230 Вт/м.кв.
  • Размеры пленки: 0.5 х 4 м.
  • Класс защиты: IP57.
  • Гарантия: 15 лет.
  • Саморегуляция мощности.
  • Антиискровая сетка.
  • Высокая прочность.

Теплолюкс Alumia

Следующий герой нашего ТОПа – Теплолюкс Alumia. Он не требует заливки и прост в монтаже. Достаточно разложить его под ламинатом или другим напольным покрытием, подключить к терморегулятору и теплый пол готов к работе. Выпускается Теплолюкс Alumia в огромном количестве вариантов, рассчитанных на площадь от 0,5 до 18 квадратных метров. Благодаря такому многообразию вариантов вы сможете подобрать модель с точными размерами для вашей квартиры. Применяемая в конструкции теплого пола алюминиевая фольга эффективно распределяет тепло по всей поверхности и экранирует электромагнитное излучение. Благодаря подключению теплого пола к терморегулятору можно будет настроит его работу только в определенные часы, тем самым существенно экономя на электроэнергии. А времени на нагрев у Теплолюкс Alumia уходит немного – всего 15-20 минут под ламинатом. Владельцы отзываются о нем строго положительно, отмечая простой монтаж, не требующий особых навыков и качественный прогрев. Так что, если вы подумываете о самостоятельной установке теплого пола и не хотите тратить на это много времени, то Теплолюкс Alumia станет отличным решением. С его установкой вы сможете справится самостоятельно, а небольшая цена на него – не скажется на семейном бюджете.

Напомню, что сравнить стоимость всех участников данного ТОПа вы можете на специализированных сайтах, ссылки на которые есть в описании. Кликайте по ссылкам на заинтересовавшие вас варианты теплого пола, после того как ролик подойдет к концу, и смотрите актуальные цены на них в различных интернет-магазинах. А пока что переходим к следующему герою нашего ТОПа.

  • Тип: электрический.
  • Способ укладки: сухой монтаж.
  • Площадь обогрева: до 18 м.кв.
  • Класс защиты: IP57.
  • Гарантия: 25 лет.

Electrolux ETS 220

Electrolux ETS 220 – это теплый пол инфракрасного типа, выпускаемый в большом количестве вариантов, позволяющим нагревать различную площадь в помещении. Этот теплый пол прост в монтаже под ламинат или другое напольное покрытие. Он не требует стяжки и применения клея. А применяемый в нем экономичный инфракрасный обогрев позволяет сэкономить до 30% по сравнению с другими системами подогрева пола. Также стоит отметить, что в Electrolux ETS 220 применяется антиискровая защита последнего поколения, которая отвечает высоким требованиям к надежности и пожаробезопасности. Пленочный обогреватель не подвержен коррозии и разрушению в течение длительного срока эксплуатации. Поэтому производитель дает 15 лет гарантии на этот теплый пол. В комплекте с теплым полом есть все необходимое для проведения самостоятельно монтажа. Владельцы отзываются о работе этого теплого пола строго положительно, отмечая быстрый нагрев. Каких-либо существенных недостатков в его работе ни у кого не обнаружено. Так что если вам нужен качественный теплый пол, то стоит обратить внимание на Electrolux ETS 220. Многообразие вариантов размеров этого пола позволит вам подобрать оптимальный вариант для любого помещения. А сухой монтаж, не требующий стяжки, позволит выполнить установку самостоятельно, не прибегая к помощи профессионалов.

  • Тип: инфракрасный пленочный.
  • Способ укладки: сухой монтаж.
  • Площадь обогрева: до 10 м.кв.
  • Мощность: 220 Вт/м.кв.
  • Класс защиты: IP52.
  • Гарантия: 15 лет.
  • Антиискровая сетка.

EASTEC Energy Save

Продолжает наш ТОП — EASTEC Energy Save. Это саморегулирующийся пленочный теплый пол, изготовленный из экологически чистых материалов со структурой CNT карбона, что дает высокую стабильность и равномерность нагрева. Также, в нем предусмотрена система саморегуляции, которая позволяет значительно снизить вероятность перегрева напольного покрытия. Также EASTEC Energy Save позволяет существенно экономить расход электроэнергии благодаря системе саморегуляции. Выпускается EASTEC Energy Save в трех вариантах шириной пленки 50, 80 и 100 сантиметров. Термическая пленка представляет собой совокупность греющих карбоновых углеродных полос, соединенных двумя медными токопроводящими шинами с использованием специальных контактов из серебряной пасты. С двух сторон карбоновые нагревательные элементы заламинированы в специальный электротехнический полиэстер, обеспечивающий полную водонепроницаемость пленки и высокую защиту от электрического пробоя. Полученный таким образом теплый пол имеет однородную структуру, высокие электроизоляционные свойства, механическую прочность всех электрических соединений. Так что, если вам нужен долговечный и надежный теплый пол, то стоит обратить внимание на EASTEC Energy Save.

  • Тип: инфракрасный пленочный.
  • Способ укладки: без стяжки.
  • Площадь обогрева: от 1 м.кв.
  • Мощность: 220 Вт/м.кв.
  • Ширина пленки: 0.5, 0.8 и 1 м.
  • Гарантия: 15 лет.
  • Саморегуляция мощности.
  • Высокая прочность.

Caleo Silver

Завершает наш ТОП лучших теплых полов под ламинат – Caleo Silver. Это инфракрасный пленочный теплый пол, примечательный высокой надежностью за разумные деньги ― благодаря использованию в конструкции пленки антиискровой серебряной сетки. А применяемый в нем инфракрасный принцип обогрева не будет сушить воздух в помещении. Поэтому с таким полом в квартире или доме не будет душно и не придется часто открывать окна. Удельная мощность этого теплого пола составляет 150 Ватт на квадратный метр. Для обогрева квартиры этого будет достаточно, а вот для неотапливаемых помещений и жильцов первого этажа дома такой мощности может не хватить для эффективного и быстрого прогрева. Тем не менее Caleo Silver является одним из самых популярных на данный момент теплых полов, за свою надежность, невысокую стоимость и широкий модельный ряд, что позволяет подобрать оптимальные вариант для помещений разной площади. В комплекте с полом, помимо рулона с пленкой, идут контактные зажимы и битумная изоляция на каждый квадратный метр, соединительные провода, а также изоляция ПВХ.

  • Тип: инфракрасный пленочный.
  • Способ укладки: без стяжки.
  • Площадь обогрева: от 1 м.кв.
  • Мощность: 150 Вт/м.кв.
  • Размеры пленки: 0.5 х 4 м.
  • Класс защиты: IP57.
  • Гарантия: 15 лет.
  • Антиискровая сетка.

Это был ТОП-7 лучших теплых полов под ламинат. Ну а я с вами на этом сегодня прощаюсь. Всем хорошего дня!

Инфракрасный тёплый пол под ламинат: разные отзывы о системе

Тёплый пол далеко уже не новинка на строительном рынке и сегодня установить его у себя в квартире или доме может себе позволить практически любая семья. Тёплые полы бывают водяными и электрическими, и последние по типу обогрева разделяются на конвекционные и инфракрасные

  • Что это такое?
  • Плюсы и минусы
  • Инфракрасный тёплый пол (отзывы)
  • Какая система тёплых полов лучше – сравнение
    • Виды систем
  • Монтаж инфракрасного тёплого пола (плёночного)

Инфракрасные тёплые полы обладают целым рядом преимуществ перед конвекционными: они не сушат мебель и воздух в помещении, дают антиаллергенный эффект, добавляют лёгкой ионизации и равномерно распределяют температуру в комнате. Это довольно молодой товар среди многообразия тёплых полов, но за счёт своих положительных качеств уже имеет много положительных отзывов и с каждым днём приобретает все большую популярность на рынке.

По виду инфракрасные полы принято разделять на:

  • Плёночные.
  • Стержневые.

Плёночный тёплый пол даёт возможность положить его не только под плитку, но и под столь прихотливые покрытия как ламинат и даже ковролин без дополнительной стяжки. За счёт этого подобную систему можно установить при косметическом ремонте квартиры или дома всего за несколько часов.

Рассмотрим подробнее, что собой представляет инфракрасный тёплый пол, отзывы о нём, плюсы и минусы этого покрытия, а также нюансы монтажа.

Что это такое?

Инфракрасный тёплый пол – это система нагрева помещения от специальной плёнки или стержневой основы, что укладывается под напольное покрытие (плитку, ламинат, паркет, ковролин). Плёнка имеет внутри специальную систему, что проводи ток и при нагревании выделяет инфракрасное излучение, а стержни закладываются в стяжку.

При нагревании эта система воздействует на напольное покрытие, повышая температуру в помещении. Инфракрасный пол довольно молодое изобретение, поэтому сказать какой из вариантов – стержневой или плёночный лучше, пока сложно, отзывов по этому вопросу мало, но несомненным плюсом плёночного пола есть то, что его можно укладывать под напольное покрытие без дополнительной стяжки.

Систему тёплых полов используют обычно, если недостаточно обогрева помещения от центрального отопления либо как единственный источник нагрева температуры.

Тёплые полы имеют как почитателей, так и ярых противников этой идеи. До сих пор в сети на различных форумах ведутся споры о том, что лучше – установить в помещении такую систему либо просто добавить радиаторов. Отзывы и комментарии довольно разняться, поэтому выработать какой-то определённый алгоритм пока сложно, слишком молодо ещё это изобретение. Поэтому решать, имеет ли смысл устанавливать инфракрасный тёплый пол, нужно индивидуально в каждом отдельном случае.

Чаще всего подобную систему потребители устанавливают в ванных комнатах и кухне, особенно если там напольным покрытием служит керамическая плитка, которая, как все знают, довольно быстро остывает, особенно в холодное время года. Но и в детские комнаты, гостиные и спальни под ламинат либо паркет довольно популярным считается укладывать тёплый пол.

В отзывах сторонников инфракрасных тёплых полов довольно часто аргументом в их пользу высказывают то, что радиаторы нагревают лишь воздух в помещении. А как известно из физики, тёплый воздух всегда поднимается наверх, где со временем остывает и холодный опускается вниз, при этом пол в комнате не нагревается. Подобное же изобретение согревает сам пол, мебель и даже человека. Но не все так просто.

Плюсы и минусы

Несомненно, инфракрасный тёплый пол имеет большое количество достоинств, сделавших его таким популярным на современном строительном рынке, но, к сожалению, существуют и некоторые недостатки, о которых производители обычно молчат в рекламе своего продукта.

Плюсы этого товара по заявлению производителя:

  1. Быстрый и лёгкий монтаж (не более двух часов).
  2. Нет необходимости в стяжке.
  3. Можно уложить не только под плитку, но и под ковролин, ламинат, линолеум.
  4. Высокая степень надёжности.
  5. 20% экономии электричества в сравнении с другими видами тёплых полов.
  6. Не сушит воздух в помещении.
  7. Ионизация воздуха.
  8. Противоаллергический эффект.

Однако если поближе рассмотреть вопрос инфракрасного тёплого пола, отзывы о товаре не столь однозначные и подобная система имеет свои нюансы:

  • Монтаж не настолько лёгкий как заявляет производитель. Да, разложить и разрезать плёнку действительно не составит труда, а вот подключить все контакты к ней довольно сложно, тут потребуется помощь опытного электрика, да и у него это займёт намного больше времени, чем заявляет разработчик.
  • Стяжка действительно не нужна, но поверхность пола должна быть идеально ровной, иначе есть возможность деформации, повреждения плёнки либо отход контактов. Поэтому если в помещении неровный пол, всё равно необходимо будет делать стяжку либо укладывать другое покрытие для выравнивания.
  • Экономия электроэнергии действительно имеет место, однако, только при хорошей бесперебойной работе общего отопления.
  • Сам по себе инфракрасный тёплый пол действительно не сушит воздух, однако, в сочетании с центральным отоплением подобный эффект пропадает.
  • Ионизация воздуха хорошая, а вот с противоаллергическим эффектом все несколько сложнее, отзывы по этому вопросу неоднозначны, поэтому пока польза не доказана.
  • Производитель заявляет, что обогрев происходит за счёт нагрева пола и мебели в помещении, однако, при сильном нагреве деревянная мебель может портиться и рассыхаться. Поэтому ставить её на участки с инфракрасным тёплым полом нежелательно, что стоит учитывать при укладке.

И не забывайте, что датчик температуры воздуха и пола в подобной системе нельзя закрывать, иначе он начнёт некорректно работать.

Инфракрасный тёплый пол (отзывы)

Так как инфракрасный тёплый пол довольно молодой продукт, то и отзывы на него пока довольно неоднозначны, ведь для таких вещей должны пройти годы в регулярном потреблении, чтобы выявить достоинства и недостатки этого товара. Однако уже сейчас у него есть поклонники и те, кто отрицает этот продукт. Но ведь довольно часто мнение людей может складываться не на личном опыте, а на основании слухов.

Давайте проанализируем самые неоднозначные заявления об инфракрасном теплом поле и попробуем отделить правду от вымысла.

Я слышал, что несмотря на заявления производителей под ламинат нельзя укладывать эту систему, так как тот не пропускает инфракрасное излучение.

Действительно, ламинат, как и линолеум, не будет пропускать тепло от инфракрасного излучения, однако, обогрев комнаты всё равно происходит, так как прогревается само напольное покрытие и отдаёт тепло помещению. В любом случае в зимнее время ламинат не прогреется выше 40 градусов, что с учётом теплоотдачи сделает его температуру немного ниже человеческого тела. Так что данную систему можно спокойно укладывать под ламинат, а это можно делать далеко не со всеми системами обогрева.

Не советую ставить у себя подобный вариант обогрева, так как инфракрасные полы излучают электромагнитное излучение, которое очень вредно для организма человека.

Это правда, инфракрасный тёплый пол действительно выделяют небольшое электромагнитное излучение, но оно незначительное и гораздо ниже, чем показатели кабельного обогрева. Реальной угрозы здоровью человек от этого нет.

Очень долго думала, устанавливать ли у себя ИКП, но потом почитала отзывы, что они не просто прогревают помещение, но и оказывают на организм лечебное воздействие.

Это не может быть правдой, так как лечебные свойства инфракрасной волны при воздействии на организм человека возможны, только когда её температура будет в точности совпадать с температурой тела, что невозможно добиться при помощи этой системы. Единственным положительным свойством в лечебном плане можно считать то, что поддержание климатических условий помещения на одном уровне, отсутствие перепадов температуры, переохлаждений либо перегревов в любом случае положительно влияет на здоровье каждого человека, а особенно на маленьких детей и пожилых людей.

Какая система тёплых полов лучше – сравнение

Хоть инфракрасный плёночный обогрев считается пока новинкой на строительном рынке, но сама система тёплых полов уже далеко не ноу-хау. Поэтому владельцы квартир и домов решившие уложить у себя подобную систему оказываются перед сложным выбором – какой из видов обогрева предпочесть.

Сравнивать инфракрасную систему с другими достаточно сложно, так как в каждом из вариантов есть свои плюсы и минусы, но и они могут поменяться местами, учитывая индивидуальные условия монтажа, общей системы отопления дома или квартиры и особенностей применяемого напольного покрытия.

Виды систем

Сегодня рынок предлагает следующие виды систем (сравним их по способу укладки, и под какое покрытие рекомендуется их применять):

  • Кабельный тёплый пол (простой) – необходимо класть в сырую цементную стяжку, можно использовать под керамическую плитку, гранит и керамогранит. Не рекомендуется под паркет (дерево), ламинат, линолеум или ковролин.
  • «Умный кабель» — укладывают в сырую цементную стяжку, можно использовать под плитку и гранит, паркет (дерево) и ламинат, но нежелательно под линолеум и ковролин.
  • Теплоизоляционные плиты (кабель) – просто укладываются на пол под любое покрытие (ограничений нет).
  • Греющие маты (кабель) – укладывается с помощью клея для плитки под керамические и гранитные напольные покрытия. Под другие покрытия класть не желательно.
  • Инфракрасный плёночный пол – с двух сторон плёнку необходимо обложить подложкой и утеплителем, подходит для всех видов покрытия (линолеум и ковролин с осторожностью).
  • Инфракрасный стержневой пол – укладывают в стяжку, подходит под все виды покрытия (дерево с осторожностью).

Если говорить о цене, то разница между затратами на установку незначительна, а вот материал в цене сильно отличается. Также стоит учитывать, что если планируется укладка тёплого пола в частном доме с холодным, не отапливаемым подвалом, то инфракрасная плёночная система может не справиться со своей задачей и потребление энергии в зимнее время увеличится вдвое по сравнению с кабелем. В этой ситуации он будет неплох в качестве дополнительной системы отопления при наличии центрального, но не как единственный источник.

Монтаж инфракрасного тёплого пола (плёночного)

Если со стержневым инфракрасным полом все более-менее понятно – его необходимо класть в сырую стяжку, то с плёночным видом не все так просто. Как уже писалось, производители заявляют, что укладка подобной системы максимально лёгкая и даже непрофессионал справится с этим максимум за два часа, но по факту все несколько сложнее.

Первоначально необходимо проверить на исправность всю электрическую проводку в помещении и только потом заниматься укладкой. При покупке материала не забудьте о приобретении специальной подложки под систему. Она должна быть прочной, герметичной, с повышенной термоизоляцией и не иметь возможности гореть. Иногда предлагают заменить подобную подложку обычной строительной фольгой, но это неправильно. Подобная фольга не обладает всеми необходимыми функциями, а вот специальная подложка, которую предлагают производители не позволяет инфракрасному излучению проникнуть в подпол дома. Все тепло будет отдаваться только наверх, для обогрева комнаты, что значительно уменьшит растраты электроэнергии.

На подложку укладывается сама система и сверху необходимо положить специальный утеплитель, разделив таким образом инфракрасную плёнку и конечное напольное покрытие. Это делается в первую очередь в целях безопасности, так как подобный утеплитель позволит создать тепловой зазор и при этом обезопасит от возможного возгорания электрической проводки. И подложка и утеплитель продаются отдельно от системы, покупать их желательно у одного производителя.

  • Измерение комнаты и составление чертежа.
  • Разрез и укладка инфракрасного плёночного пола согласно чертежу в следующем порядке:
    • укладка специальной подложки с высокими термоизоляционными свойствами,
    • раскатывание инфракрасной плёнки,
    • укладка термоизоляционного слоя (утеплителя).
  • настил напольного покрытия – плитки, ламината, ковролина и т. п.

Узнав, что такое система инфракрасного тёплого пола, рассмотрев её плюсы и минусы, а также сравнив её с другими вариантами обогрева помещения, каждый хозяин самостоятельно решает, какой вариант в конкретной ситуации будет лучше.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: