Электрические счетчики и трансформаторы тока: принцип работы

Принцип работы электросчетчика

Принцип работы электросчетчиков

У каждого из нас в квартире, доме, гараже присутствует прибор учета электроэнергии, проще говоря электросчетчик.

Он подсчитывает количество потребленной активной электроэнергии за определенное количество времени.

Электронные электросчетчики

В них все реализуется с помощью микропроцессорной техники, схема ниже:

ТТ – трансформатор тока

С помощью датчиков тока ДТ и датчиков напряжения ДН снимаются значения тока и напряжения сети.

После датчиков сигналы поступают на аналогово-цифровой преобразователь, где сигнал с аналогового превращается в цифровой и поступает на микроконтроллер.

Микроконтроллер в свою очередь производит вычисления и отправляет данные на дисплей или через интерфейс на другое устройство.

С помощью таких электросчетчиков можно централизовано вести учет электроэнергии различных линий.

Главным достоинством электронных электросчетчиков над индукционными является:

  • отсутствие вращающихся частей, что снижает вероятность поломки;
  • возможность вести учет электроэнергии по различным тарифам с автоматическим переключением по времени суток (многотарифные счетчики);
  • меньшая погрешность измерения, особенно при малых нагрузках;
  • возможность передачи данных на расстояние через интерфейсы, что не требует постоянного присутствия для снятия данных;
  • удобность применения;
  • большая стоимость;
  • большая вероятность выхода из строя при больших скачках напряжения и тока сети;
  • более дорогостоящий и трудный ремонт;
  • выше чувствительность к климатическим условиям (например перепад температур);
  • труднее диагностировать неисправности;

Принцип работы электронного электросчетчика

Схема подключения однофазного электросчетчика

Данная схема предназначена для подключения любого однофазного счетчика электрической энергии.

Однофазные счетчики чаще всего подключают по схеме прямого включения в сеть и только в очень редких случаях через трансформаторы тока.

В клеммной колодке однофазного счетчика электроэнергии расположены 4 контакта:

  • 1 клемма — ввод фазы
  • 2 клемма — выход фазы на нагрузку (в квартиру)
  • 3 клемма — ввод нуля
  • 4 клемма — выход нуля на нагрузку (в квартиру)
  • винт напряжения — для отключения катушки напряжения в индукционных счетчиках при проведении государственной поверки.

Красным цветом обозначены токовая катушка (обмотка) и фазный провод, синим цветом — катушка (обмотка) напряжения и нулевой провод.

В данной схеме перед счетчиком электроэнергии установлен вводной автоматический выключатель.

Эту схему можно использовать для электроснабжения своей квартиры, дачи или коттеджа.

Схема подключения трехфазного электросчетчика

Принцип работы счетчика

Сигналы с датчиков тока и напряжения поступают на входы АЦП микропроцессора и преобразуются в коды. Микропроцессор, перемножая цифровые коды, получает величину, пропорциональную мощности. Интегрирование мощности во времени дает информацию о величине энергии.

Микропроцессор управляет всеми узлами счетчика и реализует измерительные алгоритмы в соответствии со специализированной программой; периодически определяет тарифную зону, формирует импульсы телеметрии, ведет учет электроэнергии, времени и календаря; обрабатывает поступившие команды по интерфейсу и, при необходимости, формирует ответ.

Кроме данных об учтенной электроэнергии в памяти счетчика хранятся калибровочные коэффициенты, тарифное расписание, серийный номер, версия программного обеспечения счетчика. Калибровочные коэффициенты заносятся в память на предприятии-изготовителе. При отсутствии напряжения питания процессор переходит на питание от литиевой батареи с напряжением 3 В и емкостью 120 мА·ч. Процессор синхронизирован кварцевым резонатором, работающем на частоте 32,768 кГц. Блок питания вырабатывает два гальванически изолированных напряжения для питания микропроцессора и цепей интерфейса.

Упростить алгоритм обработки информации и снизить затраты на комплектацию позволяет структурная схема:

Структурная схема счетчика ватт-часов активной энергии переменного тока Меркурий-200»

В этой структуре микроконтроллер (МК) выполняет функцию счетчика импульсов, пропорциональную активной мощности, вывод информации на дисплей и ряд специальных функций (изменение тарифов, сохранение информации в аварийных режимах, вывод служебной информации на внешние устройства и пр.). По мере накопления импульсов, соответствующих ватт-часам, значение накопленной энергии выводится на дисплей и записывается во FLASH-память. Если произойдет сбой, временное исчезновение напряжения сети, информация о накопленной энергии сохраняется во FLASH-памяти. После восстановления питающего напряжения эта информация считывается микроконтроллером, выводится на индикатор и счет продолжается с этой величины.

В случае реализации многотарифного СЭ, устройство должно обеспечивать обмен информацией с внешними устройствами по последовательному интерфейсу. Он может использоваться для задания тарифов, инициализации и коррекции таймера реального времени, получения информации о накопленных значениях энергии и т. д. Кроме того, интерфейс может обеспечивать подключение группы распределенных в пространстве СЭ в сеть с возможностью доступа к каждому из них.

Структурная схема многотарифного счетчика

Алгоритм работы структуры следующий. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом из которых хранится информация о накопленной энергии по четырем тарифам: общем, льготном, пиковом и штрафном.

В первом банке накопления производятся с момента начала эксплуатации счетчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяц. Накопления за текущий месяц записываются в соответствующий банк, и таким образом имеется возможность определить, сколько было накоплено энергии за любой из 11 предшествующих месяцев.

Читайте также:
Устройство летнего водопровода из колодца: лучшие варианты и схемы сооружения

Перед началом эксплуатации счетчика на заводе-изготовителе обнуляют содержимое банков памяти, т.е. накопление начинается с нулевых значений.

Переключение тарифов осуществляется по временным критериям: для каждого дня недели определяется свое тарифное расписание, т.е. времена начала основного и льготного тарифов и от нуля до трех интервалов времени для пикового тарифа. До 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание для воскресенья.

В счетчике может быть установлен режим ограничения по мощности и по количеству израсходованной энергии за месяц. В этом режиме счетчик фиксирует количество энергии, израсходованной сверх лимита. При превышении установленного лимита энергии производится либо переход на накопление по штрафному тарифу, либо отключение пользователя от энергосети. Штрафной тариф также может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности по оплате.

Каждый раз при включении счетчика в сеть (после очередного пропадания напряжения) фиксируется время и дата этого момента для возможности последующего контроля. Также предусмотрена запись времени и даты несанкционированного снятия крышки устройства.

Через специальный разъем к счетчику можно подключить картридер для считывания информации с индивидуальной электронной карточки о количестве энергии, оплаченной потребителем.

Просмотр информации по предыдущим 11 месяцам производится при нажатии специально предусмотренной кнопки на корпусе счетчика. При каждом нажатии последовательно выводится информация о каждом тарифе соответствующего месяца, после чего происходит переход на предыдущий месяц, и процесс повторяется. Номер просматриваемого месяца и год отображаются на индикаторе даты. Если нажатия кнопки не происходит несколько секунд, счетчик возвращается в нормальный режим работы. При подключении картридера эта кнопка позволяет просмотреть количество энергии по каждому тарифу, имеющемуся в распоряжении у пользователя.

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

Читайте также:
Устройство фундамента - 125 фото как правильно рассчитать и построить фундамент

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Читайте также:
Что такое Стеклообои? Под покраску как универсальный материал +Видео

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через измерительные трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.
Читайте также:
Тепло земли для отопления дома: обогрев за счет энергии земли, земляное отопление из земли своими руками, фото и видео примеры

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте так же:

38 комментариев

Принципиальные схемы правильные. Фактические просто бред. В десятипроводной попутаны и1 и и2. В семипроводной на нулевую клемму счетчика подключен вместо нуля общий заземленный провод. И даже если снять перемычки и1 и и2 все равно попутаны. Автор сколько начинающих электриков вы кинули со своими бредовыми фактическими схемами. Ни одна из схем не соответсвует ПУЭ и не позволяет подключить образцовый счетчик. Поищите в нете правильные схемы а потом публикуйтесь ведь люди вам могли и поверить.

Юрий, вы не правы. Схемы правильные. Вы вообще на практике сталкивались с тем о чем говорите? Я раньше работал электромонтером в энергоснабжающей организации и лично собирал данные схемы, в настоящий момент работаю тамже в должности инспектора и по долгу службы проверяю схемы с помощью вольтамперфазометра и образцового счетчика. И принципиальные, и фактические схемы составлены правильно и легко позволяют проводить проверку учета любым из перечисленных мной способов и полностью соответствуют требованиям действующих правил.
Поэтому с удовольствием послушал бы какие именно пункты ПУЭ нарушают данные схемы, не могли бы вы уточнить? И по поводу общего заземляющего провода, то же правила почитайте и куда в РУ-0,4 подключается PEN проводник.

Анатолий, Вы приводите вверху принципиальную правильную схему и потом на фактической собираете ее не правильно. Останавлюсь на семипроводной. На принципиальной объединены и заземлены выводы И2 ТТ и подключены на нагрузочные входы счетчика 3,6,9-правильно. На фактической:
1. Установленные подвижные перемычки закорачивают вторичные обмотки ТТ (при вкрученных винтах в перемычку с обратной стороны ИКК). Счетчик будет стоять.
2. При снятии подвижных перемычек выводы ТТ И2 будут подключены на генераторные входы счетчика 1,4,7. Если по простому счетчик пойдет в обратную сторону.
3. То что в конце концов и защитный заземляющий и нулевой проводники объединены не отменяет необходимости проложить до 10 клеммы именно нулевой провод. Смотрите свою же принципиальную схему.
4. ПУЭ 1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.
Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.
Ваша схема не позволяет подключить образцовый прибор без отключения проводов.
5. Да и вообще сравните пожалуйста свою принципиальную схему со своей же фактической!
6. Правильных схем в нете полно.

Читайте также:
Укладка тротуарной плитки на раствор: особенности, этапы, преимущества, советы

P.S. Анатолий от ИКК до счетчика у Вас три токовых провода лишние. Тянется один общий и перемычки на счетчике. Еще раз смотрите принципиальную схему.

Юрий, Вам необходимо вспомнить теорию. Как протекает электрический ток в цепи? Он протекает по замкнутому контуру. Соответственно не имеет значения какой из выводов вторичной обмотки тт заземлять, и1 или и2.
1. Закоротки в испытательном блоке закорачивают выводы тт только на время проведения работ со счетчиком (например его замена) т.к. тт должны работать в режиме короткого замыкания иначе тт могут выйти из строя о чем, кстати, и идет речь в приведенном Вами пункте ПУЭ. При работе счетчика данные закоротки размыкаются.
2. В семипроводной фактической схеме на тт закорочены и1 общий провод от них идет на закорачивающую шину икк где опять разделяются и идут до счетчика. Разделение сделано на икк потому что этот вариант надежнее по сравнению с установкой перемычек в счетчике, поэтому некоторые энергоснабжающие организации и вовсе стали запрещать ставить перемычки в счетчике. Разница между принципиальной схемой и фактической только точка заземления и1 или и2.
Нулевой провод можно провести еще один, но это будет не ужный дополнительный расход проводника, т.к. заземление тт выполняется pen проводником.
В целом схема полностью соответствует приведенному Вами пункту ПУЭ.

Я все же считаю, что при эксплуатации любого изделия, в том числе и КИП следует руководствоваться эксплуатационными документами. По ЭД КИП она подключается по семипроводной системе. Поворотные перемычки токовых цепей предназначены для возможности размыкания токовых цепей счетчика, что требует и ПУЭ. А для закорачивания токовых цепей предназначена шина на нижней стороне КИП. В десятипроводной системе конструктивные элементы КИП используются не по назначению, предусмотренному производителем.

«По ЭД КИП она подключается по семипроводной системе.» Ну в данной статье нет конкретных указаний о том какую из предложенных схем использовать, здесь просто приведены варианты схем для ознакомления. Вы считаете, что использовать необходимо семипроводную схему, а я в свое время проработал 5 лет в одной из энергоснабжающих организаций, так вот эта организация прямо в технических условиях на подключение указывала, что подключение средств расчетного учета должно быть выполнено по десятипроводной схеме, соответственно семипроводные схемы не принимались, средства расчетного учета не пломбировались пока такие схемы не переделывались на десятипроводные. Правильно ли это или нет — мнения могут быть разные, но однозначно требования энергоснабжающих организаций по средствам расчетного учета должны выполняться. Что касается требований ПУЭ, то и десятипроводная и семипроводная схемы представленные в данной статье полностью им отвечают.
«А для закорачивания токовых цепей предназначена шина на нижней стороне КИП» Дайте угадаю — Вам никогда не приходилось эксплуатировать счетчики подключенные через испытательные блоки (ИБ), верно?)
Данные схемы составлены с учетом удобства эксплуатации. Поворотные перемычки, как и должны, служат для закорачивания вторичных выводов ИТТ, что бы можно было производить работы со счетчиком связанные с размыканием токовых цепей (например замена счетчика). Такие же схемы как Вы описываете, где для закорачивания токовых цепей используется шина на нижней стороне КИП действительно встречаются и применяются, но уважением со стороны людей эксплуатирующих такие схемы, мягко говоря, не пользуются, т.к. в этом случае для проведения работ в измерительных цепях при себе постоянно нужно иметь минимум три специальных винта, либо их надо оставлять где-то возле ИБ и они ВСЕГДА теряются, но даже если у тебя есть с собой эти три заветных винтика их необходимо вкрутить в находящийся под напряжением ИБ, т.е. как то насадить их на отвертку и попасть в соответствующее отверстие на ИБ, одно не осторожное движение и они слетают, особенно здорово когда работаешь в подстанции и они улетают под ячейки, в кабельные каналы и т.д. я уже не говорю о том, что вкручивание этих винтов — это работа под напряжением которая должна выполняться в электроизолирующих перчатках, а это просто «ОЧЕНЬ удобно», в эти прекрасные моменты специалист выполняющий данную работу вспоминает добрым словом и человека собравшего данную схему, и его родителей, и его бабушек с дедушками и так до седьмого колена, в конце желая ему больше никогда не размножаться)

Полностью согласен с Дмитрием! Кстати в энергоснпбжающей организации в которой я работаю так же запрещена установка перемычек в счетчике.

Читайте также:
Современные установки пожаротушения тонкораспыленной водой. Виды, принцип работы, плюсы и минусы

Подключение трехфазного счетчика через трансформаторы тока

Широко распространённая схема подключения трехфазного счетчика через трансформаторы тока (ТТ) применяется в электрических сетях напряжением 380 Вольт (мощность более 60 кВт и ток до 100 Ампер). Этот способ принято называть косвенным подключением, которое позволяет измерять большие нагрузочные токи посредством приборов учёта, рассчитанных на малую мощность (структурная схема включения приведена ниже).

Как видно из рисунка, этот метод существенно отличается от прямого включения, когда счётный прибор подключается непосредственно в фазные линии.

Воспользовавшись этим способом подсоединения трехфазного электросчетчика, удаётся снизить действующие в измерительных цепях токи до значений, определяемых коэффициентом передачи ТТ. Указанное пояснение позволяет понять, зачем применяется этот прибор (точнее для чего необходимо его включение в измерительную цепь).

Устройство и принцип работы измерительных трансформаторов

Классический трансформатор тока для счетчика представляет собой индуктивный преобразователь особой конструкции, в котором имеется две обмотки с различным количеством витков. Их число во вторичной однофазной катушке обычно меньше, чем в первичной обмотке.

Дополнительная информация. Применение трансформатора тока – один из способов снижения значений рабочих параметров с целью их измерения посредством обычных приборов.

При протекании тока в первичной обмотке ТТ, включенной последовательно в измеряемую линию, за счёт индуктивной связи во второй цепи начинает протекать нагрузочный фазовый ток меньшей величины. В эту же цепь включается токовая катушка бытового или промышленного трехфазного счѐтчика, рассчитанного на снятие текущих показаний расхода электроэнергии.

Токовые характеристики ТТ

Величина тока во вторичной цепи трансформаторного прибора зависит от коэффициента преобразования (Ктр), который может принимать стандартные значения из следующего ряда:

  • В пределах от 20/5 до 50/5;
  • В границах от 70/5 до 100/5;
  • А также в диапазоне от 200/5 до 500/5.

Обратите внимание! В этом списке приведены лишь наиболее употребительные значения Ктр для электросчётчиков (полный перечень приводится на рисунке ниже).

Из приведённой таблицы видно, что если мы выберем определённое значение тока во вторичной цепи (5 Ампер, например), то этот же параметр в первичной цепи трансформатора для счетчика может быть заметно больше (кратность составит от 4-х до 100 раз).

Преимущества и недостатки

Конструкция ТТ обеспечивает возможность безопасного подключения электросчетчика, который в нормальных условиях функционирует на рабочей сетевой частоте 50 Гц и номинальном токе во вторичной обмотке, равном 5-ти Амперам. Выбор значения Ктр = 100/5, например, позволяет рассчитать кратность передачи, обеспечивающей получение в нагрузочной цепи тока в 100 Ампер. В данном случае она соответствует 20-ти.

За счёт использования трансформаторных изделий этого класса удалось отказаться от неудобных в изготовлении и громоздких электрических приборов. Помимо этого, возможность подключения счетчика через трансформаторы тока гарантирует их надежную защищённость от КЗ и перегрузок.

Действительно, в аварийных ситуациях чаще всего из строя будет выходить сравнительно дешёвый ТТ, а не подключённый к нему прибор учёта электроэнергии.

К числу недостатков, которые имеют фазные счетчики, следует отнести:

  1. Во-первых, при малом потреблении в линейных цепях измерительный ток во вторичной обмотке иногда не достигает порога срабатывания механизма счетчика, вследствие чего последний не способен функционировать в нормальном режиме;
  2. Во-вторых, при его подключении необходимо обращать внимание на полярность включения трансформаторов тока, что не всегда удобно;
  3. И, наконец, при использовании ТТ потребуется дополнительное место для его установки, а сам прибор нуждается в периодической поверке (совместно с подключённым электросчётчиком).

Обратите внимание! Современные электронные счетчики электроэнергии практически лишены первого недостатка, который в основном касается электромеханических моделей.

Другие проблемные места скорее можно отнести к сложностям включения прибора в трёхфазную цепь, чем к его недостаткам.

Особенности подключения

При более внимательном рассмотрении схемы подключения 3 фазного счетчика через трансформатор обнаруживается, что она предполагает обязательное соблюдение полярности включения обеих обмоток. Всегда искали отличный ресурс, где происходит настоящий взрослый контент. Тогда смотрите порно зрелых посмотрите новое зеркало https://мамки.com . Тут зрелые красотки вытворяют нереальные вещи и доставят вам невиданное удовольствие . Перед тем, как подключить его посредством ТТ, важно обратить внимание на следующие детали:

  • На первичной катушке имеются три пары входных клемм, один из контактов которых предназначен для подсоединения соответствующего фазного провода и обозначается литерой «Л1» (от второго контакта, помечаемого как «Л2» провод идёт непосредственно к 3х фазной нагрузке);

  • На катушке измерения также имеются клеммы, обозначаемые как «И1» и «И2», соответственно, к которым в параллель подключается обмотка фазного счётчика;
  • Сечение подключаемого к клеммам первичной обмотки кабеля выбирается исходя из значения тока в нагрузке;
  • Во вторичных цепях должен применяться проводник с рабочим сечением не ниже 2,5 мм² (он идёт непосредственно к счетчику).
Читайте также:
Типы конвекторов для отопления помещения

Дополнительная информация. Специалисты советуют организовывать подключение 3-х фазного ТТ особыми маркированными по цвету проводами, на концах которых нанесено обозначение.

Кроме того, очень часто подсоединение к счётчику вторичной обмотки организуется посредством промежуточного клеммника, на котором ставится специальная пломба.

Отметим также, что наличие дополнительных контактов обеспечивает простоту замены и обслуживания 3-х фазного счётного прибора. При его применении энергию от потребителей во время ремонтных манипуляций можно не отключать.

Схемы подключения трансформаторов

От того, какая схема подключения трехфазного счетчика через трансформаторы тока используется в данном случае, зависит надёжность работы всей измерительной системы в целом. При выборе той или иной из них необходимо учитывать следующие требования:

  • Запрещено включать счетчик через трансформаторы тока, если он предназначен для прямого подсоединения в измерительную сеть;
  • При косвенном включении необходимо исследовать электрическую схему и определиться с подходящей для неё моделью трансформатора (по мощности и току);

Важно! Перед тем, как выбрать трансформатор для каждой конкретной ситуации, прежде всего, следует обратить внимание на его коэффициент преобразования, имеющий отличные значения для разных моделей.

  • Прежде чем выбрать трансформатор тока для определённой измерительной схемы нужно внимательно изучить порядок расположения контактов, к которым подключается трехфазный счетчик.

Далее будет рассмотрена конкретная схема подключения счетчика в трёхфазную цепь (смотрите рисунок ниже).

Поскольку общий принцип функционирования всех электросчетчиков одинаков, то назначение имеющихся на них клемм также схоже. Для фазы «А» оно выглядит следующим образом:

  • Контакт К1 нужен для того, чтобы подключать к счётчику токовый провод и один конец катушки напряжения трансформатора;
  • Клемма К2 предназначена для подключения нагрузки к данной фазной линии;
  • Контакт К3 используется для подсоединения второго конца обмотки напряжения ТТ.

Таким же образом к счётчику подключается вторая фаза «В» (посредством клемм К4, К5 и К6), а также третья – «С» с контактами К7, К8, К9.

Обратите внимание! Клемма К10 – общая нулевая, относительно её на К1, К4 и К7 счётчика поступают фазные напряжения со следующими тремя обозначениями: «А», «В» и «С».

К недостаткам совмещённой схемы следует отнести большую погрешность измерения потребляемой мощности, а также невозможность выявления пробоя в обмотках трансформатора.

На практике чаще всего применяется более простая схема подключения электросчетчика, согласно которой осуществляется совмещённое подсоединение вторичных токовых цепей. Она функционирует следующим образом:

  • К токовому контакту счётчика от сетевого автомата подключаются фазные провода. Для упрощения схемы к нему же подсоединяется вторая клемма фазного напряжения;
  • Фазный ввод катушки выбираем таким образом, чтобы он одновременно являлся выходом первичной обмотки ТТ. В дальнейшем он подсоединяется к нагрузке через распределительные цепи;
  • Начало вторичной трансформаторной обмотки подсоединяется к первому контакту токовой катушки счетчика (по одной из фаз);
  • Конец вторичной трансформаторной катушки соединён с концом токовой обмотки подключенного счётного механизма.

Аналогичным образом подключаются все оставшиеся фазы.

Соединение и заземление вторичных обмоток счётчика осуществляется в соответствии с требованиями ПУЭ (они выполняются по схеме «звезда»).

Благодаря такой организации подключения контактов получается семипроводная схема (в отличие от 10-ти контактной). В заключение следует напомнить, что при подключении через ТТ важен грамотный выбор его типа.

Правильно выбрать трансформатор тока, значит, принять в расчет, что максимально допустимое токовое значение во вторичной обмотке не может превышать 40% от номинала, а минимальное – 5%. Все подключаемые к счётчику фазные напряжения должны следовать в определенном порядке, который контролируется посредством специального прибора (фазометра).

Видео

Трансформаторы масляные ТМГ 10(6) кВ

  • Трансформаторы ТСЛ
  • Трансформаторы ТСЗЛ
  • Трансформаторы ТМ
  • Трансформаторы ТМГ
    • Трансформаторы масляные ТМГ 10(6) кВ
      • ТМГ 16/10(6)
      • ТМГ 25/10(6)
      • ТМГ 40/10(6)
      • ТМГ 63/10(6)
      • ТМГ 100/10(6)
      • ТМГ 160/10(6)
      • ТМГ 250/10(6)
      • ТМГ 400/10(6)
      • ТМГ 630/10(6)
      • ТМГ 1000/10(6)
      • ТМГ 1250/10(6)
      • ТМГ 1600/10(6)
      • ТМГ 2000/10(6)
      • ТМГ 2500/10(6)
    • Трансформаторы масляные ТМГ 15 кВ
    • Трансформаторы масляные ТМГ 20 кВ
  • Трансформаторы ТМГ разделительные
  • Трансформаторы ТМГФ
  • Трансформаторы ТМГ12
  • Трансформаторы ТМГэ
  • Трансформаторы ТМГС
  • Трансформаторы ОМП (ОМ, ОМГ)
  • Комплектные трансформаторные подстанции КТП
  • Распределительные устройства КСО; АКУ; ВРУ; ГРЩ; ЩО
  • Системы охлаждения трансформаторов
  • Комплектующие для трансформаторов
  • Трансформаторы в лизинг
  • КТП в лизинг
ТМГ 16/10(6)
ТМГ 25/10(6)
ТМГ 40/10(6)
ТМГ 63/10(6)
ТМГ 100/10(6)
ТМГ 160/10(6)
ТМГ 250/10(6)
ТМГ 400/10(6)
ТМГ 630/10(6)
ТМГ 1000/10(6)
ТМГ 1250/10(6)
ТМГ 1600/10(6)
ТМГ 2000/10(6)
ТМГ 2500/10(6)
Номинальная мощность
трансформаторов, кВт
Потери, Вт Ток ХХ% Напряжение КЗ,% Габаритные размеры, мм Масса, кг
ХХ КЗ
ТМГ-16 10 (6) 130 630 3,2 4,5 780х650х850 290
ТМГ-25 10 (6) 130 630 3,2 4,5 780х650х850 290
ТМГ-40 10 (6) 160 900 3 4,5 780х760х920 350
ТМГ-63 10 (6) 210 1300 2,8 4,5 780х760х990 410
ТМГ-100 10 (6) 290 1970 2,6 4,5 1100х870х1640 790
ТМГ-160 10 (6) 440 2650 2,4 4,7 1250х920х1680 990
ТМГ-250 10 (6) 550 3100 2,3 4,5 1420х990х1740 1300
ТМГ-400 10 (6) 800 5500 2,1 4,5 1650х1080х1780 1650
ТМГ-630 10 (6) 1050 7600 2 5,5 1820х1150х1910 1950
ТМГ-1000 10 (6) 1550 10200 2 5,5 2000х1250х2100 2890
ТМГ-1250 10 (6) 1650 12400 2 6 2150х1250х2100 3000
ТМГ-1600 10 (6) 1650 12400 2 6 2150х1250х2100 3000
ТМГ-2000 10 (6) 1650 12400 2 6 2150х1250х2100 3000
ТМГ-2500 10 (6) 1650 12400 2 6 2150х1250х2100 3000
Читайте также:
Что такое герметик: особенности, сфера применения, виды строительных герметиков

Трансформаторы ТМГ 10 Кв

Для преобразования трехфазного тока частотой 50Гц используются масляные трансформаторы ТМГ 10 Кв. Электрическая энергия, проходя через низкочастотные дроссели, уменьшается до 0,4-0,23 киловатт в проводке потребителя. Применяется пятиступенчатая регулировка потенциалов на торцах проводника с интервалом ±2х2,5%. Ручная поправка производится только на отключенном механизме, предотвращая получение травмы.

Эксплуатируются трансформаторы ТМГ 10 кВ в местностях с умеренным (-45+40оС), холодным (-60+40 градусов Цельсия) климатом. Выпускаются производителем стандартами У1, УХЛ1. Монтируются масляные преобразователи вольтажа сети внутри, снаружи помещений. Противопоказано высококонцентрированное пылевое окружение, присутствие взрывоопасных материалов.

Особенности трансформатора ТМГ 10 кВ

Узлы прикрываются металлическим каркасом. Катушки напряжения изолируются, противодействуя попаданию воды, намоканию. Масляные резервуары после изготовления загружаются производителем минеральным деформирующимся веществом. Лагуна аппарата не имеет контактов с атмосферой. Конструкторская разработка предотвращает ухудшение свойств жидкости в течение планового четвертьвекового использования агрегата. Отклонения в результате колебаний показателей нагревания компенсируются гофрированной оболочкой электротехнического оборудования. Контроллер жидкого диэлектрика оснащен фильтром, наполненным порошкообразным полимерным соединением кремниевой кислоты; он препятствует проникновению влаги и промышленных выбросов в масляные силовые трансформаторы ТМГ 10 кВ. Волнистое покрытие поверхности охлаждает механизм.

Комплектующие трансформаторов ТМГ 10 Кв

Силовые преобразователи электроэнергии снабжены различными контролирующими, сигнализирующими модулями:

  • измерителями температуры очищенной фракции нефти;
  • указателями объема теплоотводящей, изолирующей среды;
  • защитной трубопроводной арматурой;
  • контроллерами имеющегося давления;
  • изолированными соединительными устройствами;

Биметаллический измеритель температуры ТПБ-100 вмонтирован в стакан защитной поверхности трансформатора ТМГ 10 Кв, показывает состояние нагрева поверхностных слоев жидкости; в соответствии условий эксплуатации заменяется электрорегулятором, сигнализатором.

Итальянский поплавковый контроллер жидкого диэлектрика монтируется в емкости, контролируя уровень жидкости при колебаниях нагрузки, внешних климатических изменений.

Масляные силовые трансформаторы ТМГ 10 Кв защищаются при аварийных ситуациях предохранительными клапанами.

Простота обслуживания, длительный безаварийный срок использования трансформатора ТМГ 10 Кв, пятилетняя гарантия качества экономят средства приобретателя, позволяют организовать круглосуточную беспрерывную работу.

По окончанию планового срока использования агрегат демонтируется, заменяется новым. В редких случаях происходит его ревизия и дальнейшая эксплуатация.

Низкая цена производителя позволяет заказать масляные трансформаторы ТМГ 10 Кв предприятиям, организациям любой формы собственности.

Консультация по выпускаемой продукции

Наши менеджеры сориентируют вас по ценам и срокам и помогут заполнить опросный лист в соответствии с вашими техническими требованиями

Трансформатор ТМГ 250 10 0,4

1 – ввод НН;

2 – ввод ВН;

4 – табличка паспортная;

5 – петли подъемные;

6 – пробка для слива масла;

7 – привод переключателя;

10 – клемма заземления;

11 – маслоуказатель;

12 – радиатор;

13 – клапан сброса давления;

14 – мембранно-предохранительное устройство.

Трансформатор ТМГ 250 10 0,4 габариты / размеры из прайс-листа – каталога:

Вы покупаете его на всегда!

Срок службы 45 лет

Официальный срок службы
нового оборудования

По факту работают дольше

Трансформаторы собранные в СССР
работают до сих пор

Часто задаваемые вопросы

Конечно, у нас собстевенное производство, поэтому мы можем производить не стандартные транс р с боковым подключением вводов и выводов высокого и низкого напряжения. Вправо и влево – вверх и вниз, типа НН и ВН и дополнительными опциями! Сборка любых технических параметров первичной и вторичной обмотки

Да, мы сотрудничаем с официальными дилерами, представительство в России, список таких заводов:
Казахстан – Кентауский трансформаторный завод Белоруссия Минск – Минский электротехнический завод им Козлова Украина Богдано Хмельницчкий (Запорожский) – Укрэлектроаппарат Алтайский Барнаул – Барнаульский Алттранс Тольяттинский Самарский – Самара ЗАО Электрощит СЭЩ Санкт Петербург СПБ Невский – Волхов Великий Новгород Подольский – ЗАО Трансформер Чеховский Электрощит Георгиевский ОАО ГТЗ Компания кубань электрощит

Марки трансформаторов с естественной масляной системой охлаждения обмоток серии ТМ ТМГ ТМЗ ТМФ ТМГФ. Виды баков гофро (гофрированный) и с радиаторами (радиаторный) А так же доступны линейки сухих трансформаторов ТС ТСЗ ТСЛ ТСЛЗ

Читайте также:
Стоит ли выбирать стиральную машину с функцией сушки и какие у нее недостатки

Производим повышающие и понажающие напряжение заземление тока, большие цеховые, производственные, промышленные и общепромышленные трансформаторы собственных нужд общего назначения внутренней встроенные в помещение ТП и наружной установки закрытого типа. Выбор наминалы мощности 25 40 63 100 160 250 400 630 1000 (1 мВа) 1250 (1 25 мВа) 1600 (1 6 мВа) 2500 4000 6300 кВа и напряжением 6 10 35 110 0.4 кВ кВт. Можем сделать испытание напряжением под заказ, например компоновка новые типовые проекты из аморфной стали или с глухозаземлённой нейтралью каскадные, разделительные, фланцевые с боковыми вводами выводами. Строительство соответствует нормам ПУЭ и ТУ сертификация систем охлаждения. С необходимыми параметрами и тех характеристиками габаритами размерами весом высотой шириной и доп описание из образеца технического задания справочные данные документация условия работы. Прайс каталог с ценами завода производителя. Производство в России! Фото состав (из чего состоит) и чертежи принципиальная однолинейная электрическая схема по запросу. Срок эксплуатации 25 лет

Поставляем в дачный посёлок коттеджные дачи коттеджи, садовые СНТ товарищества, сельские деревенские местности деревни

Прайс лист на оборудование спрашивайте у менеджеров!

Трансформатор ТМГ 10 10 0 4, 400, 1000, 630 И 250: объясняем все нюансы

►+УСПЕЙ ТМГ 250 10 0,4 кВ Трансформатор цена производителя (Масляный Герметичный Силовой) Напряжение ток У1 УХЛ1 Мощность 250 кВт Технические Характеристики вес размер схема тип СЭЩ Минск (НОВЫЙ 2019)

100% Готов к работе

Паспорт и протокол испытаний

Без посредников!

Производство Россия. Купите без посредников!

Срок службы 25 лет

При вводе в эксплуатацию трансформатор ТМГ 250 не требует дополнительных расходов, не нуждается в профилактических ремонтах в течение срока службы. Масло не соприкасается с воздухом и не окисляется

Перед отгрузкой электротехническое оборудование проверяется, испытывается и полностью готово к эксплуатации
В комплекте поставляются:паспорт и протокол испытаний

У/Ун-0 (звезда-звезда), Д/Ун-11 (треугольник-звезда), У/Zн-11 (звезда-зигзаг)

Алюминий (алюминиевый), медь (медный)

от -45 до +40 °С (У1), от -60 до +40 °С (УХЛ1)

ГОСТ 125077, ГОСТ 30830, ГОСТ Р 52719-2007, МЭК – 76

Технические данные и габаритно-весовые характеристики

1 — ввод НН;

2 — ввод ВН;

4 — табличка паспортная;

5 — петли подъемные;

6 — пробка для слива масла;

7 — привод переключателя;

10 — клемма заземления;

11 — маслоуказатель;

12 — радиатор;

13 — клапан сброса давления;

14 — мембранно-предохранительное устройство.

Номинальная мощность трансформаторов, кВт

Габаритные размеры, мм

Трансформаторы заправленны трансформаторным маслом типа ГК и в комплекте 4 контактных зажима
Оборудование всех марок проходит обязательную проверку и испытание, что подтверждают справочные паспортные данные устройство таблица эксплуатации номинальные токи параметры сопротивления обмотка Трансформатор ТМГ 250 10 0,4

Конструкции и виды устройства

В конструкции этого трансформатора используется масло, которое предназначается для охлаждения устройства. Также с его помощью можно обеспечить изоляцию между внутренним напряжением. Трансформаторное масло обязательно должно иметь высокую температуру. Если необходимо значительно улучшить изоляцию, тогда можно использовать внешние радиаторы. Существует также мощный силовой трансформатор ТМГ 250, 400 или 630 (мощность устройства может составлять до 1000 Ква). Этот трансформатор имеет специальные вентиляторы и масляные насосы, которые отвечают за охлаждение.

Высоковольтный трехфазный трансформатор ТМГСУ во время работы он может подвергаться процессам сушки с помощью автономного отопления. Благодаря этому вы легко сможете предотвратить формирование коронки и разнообразные электрические пробои от высокой нагрузки.

Масляные трансформаторы высокого напряжения ТМГ 10 10 0 4 с контролем реле также могут иметь газовое реле. Эти защитные устройства также могут использоваться для обнаружения газа внутри трансформаторы. Для автоматического контроля работы реле трансформатора специалисты устанавливают автоматы, которые могут отвечать за отключение устройств при перенапряжении. Понижающий трансформатор может иметь внезапное реле, которое сможет отключить устройство при перегреве. В большинстве случаев вы сможете увидеть, что деталь является встроенной и устанавливается с использованием 3 проводков. При необходимости можете прочесть про тороидальный трансформатор.

Конструкция трансформаторов ТМГ

Баки трансформаторов ТМГ прямоугольной формы без маслорасширителя. Для подъема бака и трансформатора в сборе используются крюки, расположенные под верхней рамой бака. На крышке бака имеется кран (пробка) для залива масла, внизу бака имеются пробка для спуска масла, кран (пробка) для взятия пробы, болт заземления. Вводы ВН и НН расположены на крышке.

В герметичных трансформаторах типа ТМГ масло не соприкасается с воздухом и не окисляется. Они не требуют дополнительных расходов при вводе в эксплуатацию и не нуждаются в профилакти-ческих ремонтах ревизиях в течении всего срока службы и отпадает необходимость в анализе и реге-нерации масла. Уровень масла в трансформаторах контролируется визуально по указателю уровня масла, который расположен на стенке бака. При наличии указателя предельного уровня масла, до-полнительный контроль предельного нижнего уровня осуществляется визуально по наличию индика-тора в стеклянной колбе.

Читайте также:
Современные установки пожаротушения тонкораспыленной водой. Виды, принцип работы, плюсы и минусы

По желанию заказчика возможна:

  • ● установка катков в трансформаторах, которые служат для продольного и поперечного переме-щения трансформаторов;
  • ● установка пробивного предохранителя на стороне низкого напряжения;
  • ● установка контактных зажимов;
  • ● для измерения температуры верхних слоев масла, на крышке трансформатора может устанавли-ваться спиртовой или электроконтактный термометр. Возможна установка термометрического сиг-нализатора;
  • ● для контроля внутреннего давления и сигнализации о предельно допустимых величинах давле-ния устанавливаются мановакуумметры;

Данные по расшифровке

ТМ-100/10-77У1 — трансформатор с охлаждением масляного типа c двумя обмотками, тремя фазами, первоначальная мощность 100 кВА, напряжение 10 кВ, чертеж и схема 1977 г., стандарты советские, используется на открытом пространстве либо в хорошее вентилируемом помещении;
ТСЗ-100/10-75УЗ — защищенный трансформатор сухого исполнения, отлично противостоит сильным перепадам напряжения, первоначальная мощность 100 кВА, напряжение 10 кВ, чертеж и схема 1977 г., можно устанавливать в помещениях;
ТРДНС-40000/35 74Т1 — низковольтный трансформатор, имеет расщепленную двойную обмотку, двухфазный. Разрешается эксплуатировать в помещении с вентиляцией, на улицах или в подсобных строениях с РПН для собственных нужд электростанций. Первоначальная мощность 40 MBА, напряжение 35 кВ, строение 1974 г., может работать в очень жарком климате;
АТДЦНТ-125000/220/110-98У1 — автотрансформатор с охлаждением масляного типа, двумя обмотками, тремя фазами и уникальной по исполнению системой выброса газов, с РПН, первоначальная мощность 125 MBА, обмотка типа ВН, напряжение 220 кВ, обмотка СН, напряжение 110 кВ, конструкция 1998 г., может работать на улице.

Советы по использованию:

  • Точка вспышки (мин) и температура застывания (макс.) 140С и -6 с, соответственно. Диэлектрическая прочность соединений составляет 12 МВ/м (RMS) но для эксплуатации в условиях производства нужно получить сопротивление >24 МВ/м (RMS). Для этого применяют силовые модели ТМГФ, АТМГ, ТМЗ, ТМГМШ и прочие;
  • Для использования в бытовых условиях внутри помещений или вблизи легковоспламеняющихся предметов, нужно использовать либо сухие трансформаторы, либо оснащенные реле защиты;
  • Для применения в производственных сферах, электрики советуют модели типа СЭЩ, которые помогают не только нормализовать напряжение, но и способствуют экономии электроэнергии;
  • Чтобы ускорить охлаждение трансформатора, рекомендуется установить дополнительные гофрированные стенки;
  • Измерение температуры масла внутри устройства осуществляется при помощи специальной гильзы, в которую вставляется промышленный термометр из закаленного стекла, ни в коем случае его нельзя сливать при включенном приборе;
  • Перед тем, как купить трансформатор серии ТМГ, изучите его паспорт, производство, некоторые модели работают только на масле определенного типа.

Структура условного обозначения (Расшифровка)

ТМГ — Х/6(10) У(ХЛ)1 — Х

  • ● Т – трансформатор трехфазный,
  • ● М – охлаждение масляное с естественной циркуляцией воздуха и масла,
  • ● Г – герметичный,
  • ● Х – номинальная мощность, кВА,
  • ● 6(10) – класс напряжения обмотки ВН, кВ,
  • ● У(ХЛ)1 – климатическое исполнение и категория размещения по ГОСТ 15150-69;

Инструкция по использованию

Если вы планируете осуществлять работу с устройством, тогда необходимо изучить правила его использования. Также вам необходимо помнить, что устройство считается достаточно опасным. Если вы используете трансформатор ТМГ, тогда изучите рекомендации по использованию:

  1. Работу с устройством необходимо осуществлять только в удобной одежде.
  2. Нельзя осуществлять работу с устройством, которое имеет вмятины и трещины.
  3. Постарайтесь регулярно проверять КТП на количество масла в баке.
  4. Перед началом работы устройства проверьте его на работоспособность.
  5. Для хранения трансформатора, вам может потребоваться сухое помещение.

Инструкции погрузки / разгрузки

Стоимость и сроки на монтаж, пусконаладочные работы и установку Трансформатор ТМГ 250 10 0,4
так же информацию о сметах и типовых проектах уточняйте по телефону +7 (982) 366-66-60

Ремонт ревизия Трансформатор ТМГ 250 10 0,4

    Осуществляем работы:
  • Ремонт
  • Ревизия
  • Покраска
  • Реставрация
  • Модернизация
  • Капремонт
  • Капревизия
  • ▼ Посмотрите фото нашего завода ▼

    Поставка в России и СНГ

    Как правило срок доставки занимает от 1 до 5 дней

    Транспортная компания

    Договор с компанией сокращает
    время и стоимость до 2-х раз!

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: